
Lab 8 c©2008 Felleisen, Proulx, et. al.

8 Introducing Type Parameters

Goals

In the first part of this lab you will learn how to correctly design tests for
the methods that change the state of an object.

In the second part of the lab you will learn to abstract over the func-
tional behavior.

In the third part you will get the first introduction to the abstraction
over the type of data using type parameters.

8.1 Designing Tests for State Change

For this part download the files in Lab8Sp2008.zip. The folder contains the
files ImageFile.java, ISelect.java, SmallImageFile.java, AList.java, MTList.java,
ConsList.java, and Examples.java.

Starting with partially defined classes and examples will give you the
opportunity to focus on the new material and eliminate typing in what
you already know. However, make sure you understand how the class is
defined, what does the data represent, and how the examples were con-
structed.

Create a new Project Lab8Part1 and import into it all the given files. Add
the variable to include tester.jar in the project.

• Design the method crop that changes the dimensions of an ImageFile
object to the given width and height. The Examples class contains com-
ments on what needs to be done to design the tests. Follow the outline
given by the comments to design the needed tests.

• Design the method changeName that allows us to change the name
field of an ImageFile object. Design the tests.

8.2 Abstracting over the Datatype: Generics

Introducing type parameters

Now look at the interface ISelect. It includes a type parameter T:

public interface ISelect<T> {
/* Return true if this Object of the type T should be selected */
public boolean select(T t);

}

1



c©2008 Felleisen, Proulx, et. al. Lab 8

That means that the implementing class can decide what type of data
should be used as the argument to the select method. This allows us to
define the class SmallImageFile as follows:

/* Select image files smaller than 40000 */
public class SmallImageFile implements ISelect<ImageFile> {

/* Return true if the size of the given ImageFile is smaller than 40000 */
public boolean select(ImageFile o) {
return o.height * o.width < 40000;

}
}

Look at the class definition for the class ImageFile to see the use of the
type parameter there.

Moreover, the classes that represent a list of arbitrary items can now
specify the type of items that can be included in the list construction.

Re-do all of the problems from the previous part, but using the type
parameters

1. In the Examples class design the tests for the class SmallImageFile, just
as you did before.

2. Design the method allSmallerThan40000 that determines whether all
items in a list are smaller that 40000 pixels. The method should take
an instance of the class SmallImageFile as an argument.

3. Design the class NameShorterThan4 that implements the ISelect<ImageFile>
interface with a method that determines whether the name in the
given ImageFile object is shorter than 4.

Make sure in the class Examples you define an instance of this class
and test the method.

4. Design the method allNamesShorterThan4 that determines whether all
items in a list have a name that is shorter than 4 characters. The
method should take an instance of the class NameShorterThan4 as an
argument.

5. Design the method allSuch<T> that that determines whether all items
in a list (of items of the type T) satisfy the predicate defined by the se-
lect method of a given instance of the type ISelect<T>. In the Examples
class test this method by abstracting over the method allSmallerThan40000
and the method allNamesShorterThan4.

2



Lab 8 c©2008 Felleisen, Proulx, et. al.

6. For the second portfolio problem, at home, follow the same steps as
above to design the method anySuch that that determines whether
there is an item a list that satisfies the predicate defined by the select
method of a given instance of the type ISelect.

Equality

Look now at the implementation of the method contains for the classes that
represent a list of <T>. We know this would not work very well, because
the Java comparison for equality (the equals method) requires that we are
testing against an identical object, not just an object that contains the same
data.

The test harness includes a parametrized ISame interface defined as fol-
lows:

interface ISame<T>{
// is this object the same as the given one?
boolean same(T that);

}

1. Modify the class ImageFile so that it implements the ISame<T> inter-
face, by defining a method that compares this ImageFile against the
given one.

2. Modify the method definition of the contains method so that it ex-
pects that the object passed as argument implements the ISame<T>

interface and use the given argument to invoke the ISame method.

3. Of course, you are following the DESIGN RECIPE and so you have
made examples and tests for your method.

4. If you are brave, modify the definition of the classes that represent
lists of objects of the type <T implements<ISame<T>>. It allows you
to rewrite the code for the contains method so that this can invoke the
same method.

5. Java provides a similar interface that can be used to compare two
objects — Comparator. If you have the time, ask the TA to show you
where to find the documentation for Java libraries, and look up the
information on the Comparator interface.

3


