
Lab 6 c©2008 Felleisen, Proulx, et. al.

6.1 The World

Our projects that extended the World contained three import statements,
indicating that we need to use classes defined in three different libraries
written by someone else.

To run a project that extends the World in Eclipse (or any other Java 1.5
IDE) we need to save a copy of the relevant library files in a folder, and
specify in the project properties the file path to these libraries.

Managing the Libraries

• In the previous lab you have used one library file, tester.jar. In this lab
you will use three additional library files. We suggest that you keep
all library files in a common folder. For the purposes of this lab we
will call this folder JARs.

• Copy into this folder the three library files draw.jar, colors.jar, and ge-
ometry.jar.

• In the Project menu select Properties.

• In the left pane select Java Build Path

• In the top menu line select Libraries

• On the right select Add Variable A pane with title New Variable
Classpath Entry will open.

• Click on Configure Variables...

• Click on New to get the New Variable Entry pane

• Enter draw as Name and click on File... to select the draw.jar file in your
JARs directory.

• Hit OK. A new entry should be visible under the Classpath Variables.

• Click again on Configure Variables... and follow the same steps to add
the file colors.jar to the Variables, and to add the file geometry.jar to the
Variables.

• Hit Cancel to get back to the main Eclipse environment.

From now on all your projects will be able to use these libraries.

1

c©2008 Felleisen, Proulx, et. al. Lab 6

Configuring a Project with the World Library

Start a new project BlobWorld. Import the .java files from the BlobWorld
folder. Notice that the files are marked with a number of errors. You need
the World library.

To work with the libraries you need to add the three Variables you de-
fined earlier to this project. The process is similar to what you did earlier:

• In the Project menu select Properties.

• In the left pane select java Build Path

• In the top menu line select Libraries

• On the right select Add Variable A pane with title New Variable
Classpath Entry will open.

• Click on draw entry in the list of available Variables and hit OK.

• You are back in the pane where you started adding a variable, but
now, the entry for draw is available.

Repeat the last two steps for the colors and geometry Variables.

• When you are done, hit OK to get back to you project environment.

You can now run your BlobWorld project. The key controls the move-
ment of the ball, but the timer also moves the ball randomly on each tick.
The world ends when the ball moves out of bounds.

Make sure you can run the project. Read the code, to see the design.
It is nearly the same as what you have done in ProfessorJ. The method
runWorld is invoked as a part of the test suite.

Making a Better World

Change the class TimmerWorld so that the world now consists of two Blobs,
one that moves randomly on tick, and another that is controlled by the user
through the arrow key events. Add the code that ends the world (using
the endOfWorld method) when the two Blobs are overlapping (the distance
between their centers is smaller than the sum of their radii). Follow the
Design Recipe.

2

Lab 6 c©2008 Felleisen, Proulx, et. al.

6.2 Quiz

6.3 Circular Data

We will now see in practice how to deal with circularly referential data
similar to what we have seen in lectures.

In this part we’ll visit a familiar concept where circular data exists –
namely, buddy lists. These buddy lists could be IM buddy lists, ICQ ubuddy
lists, or lists of friends on social networks. Inuitively a buddy list is just a
username and a list of other buddies; the latter part is where we get circu-
larity. So, start by working with the following files:

• Buddy.java

• ILoBuddy.java

• MTLoBuddy.java

• Examples.java

1. Create a project LabBuddies and import the four files listed above
into the default package. Add the tester.jar library to the project as
you have done before.

All errors should have disappeared and you should be able to run the
project.

2. Before we can design any methods for the lists of buddies, we need
to ba able to make examples of buddy lists.

Design the method add that adds a buddy to one person’s buddy list.
Add any additional methods you may need to make sure you can
represent the following circle of buddies:

• Tom’s buddies are Jan and Tim

• Tim’s buddies are Dan and Jan and Tom

• Jan’s buddies are Tom and Tim

• Dan’s buddy (only one) is Tim

3. Now we would like to ask some pretty common questions, e.g

• Does this person have this other person as a direct friend?

3

c©2008 Felleisen, Proulx, et. al. Lab 6

• How many buddies do two buddies have in common?

• Does this person have this other person as a ”friend-of-a-friend”?

The purpose statements and the mehtod headers for the three meth-
ods are already given:

// returns true if this has that as a direct buddy
boolean hasDirectBuddy(Buddy that)

// returns the number of buddies this and that have in common
int countCommonBuddies(Buddy that)

// returns true if this has that as a direct or distant buddy
boolean hasDistantBuddy(Buddy that)

Start by implementing hasDirectBuddy. Follow the Design Recipe!

If you have time remaining, design the other two methods as well.

4

