
Lab 6 c©2008 Felleisen, Proulx, et. al.

6 Starting in Eclipse; Understanding Constructors

6.1 Eclipse IDE and the tester library

Goals

In the first part of this lab you will learn how to work in a commercial
level integrated development environment IDE Eclipse, using the Java 1.5
programming language. The environment provides an editor, allows you
to organize your work into several files that together comprise a project,
and has a compiler so you can run your programs. Several projects form a
workspace. You can probably keep all the work till the end of the semester
in one workspace, with one project for each programming problem or a lab
problem.

There are several step in the transition from ProfessorJ:

1. Learn to set up your workspace and launch an Eclipse project.

2. Learn to manage your files and save your work.

3. Learn the basics of the use of visibility modifiers in Java.

4. Learn the basics of writing test cases using the tester library.

Learn to set up your workspace and launch an Eclipse project.

Start working on two adjacent computers, so that you can use one for look-
ing at the documentation and the other one to do the work. Find the web
page on the documentation computer:

http://www.ccs.neu.edu/howto/howto-windows-n-unix-homedirs.html

and follow the instructions to log into your Windows/Unix account on
the work computer.

Next, set up a workspace folder in your home directory where you will
keep all your Java files. This should be in

z:\\eclipse\workspace

1



c©2008 Felleisen, Proulx, et. al. Lab 6

Note that z: is the drive that Windows binds your UNIX home direc-
tory.

Start the Eclipse application.

DO NOT check the box that asks if you want to make this the default
workspace for eclipse

Starting a new Project

• In the File menu select New select Project.

• In the pane that opens, under Java wizard select Java Project.

• Name the project Project1
You can select a different name, but here we will refer to this project
as Project1.

• In the bottom part select Create separate source and output folders
and click on Next.

• In the next pane just hit Finish.

• Now in the Package Explorer pane there should be Project1. Click on
the triangle or the plus sign on the side to open up the sub-parts, and
do so again next to src line.

• Download the files EclipseLab1.zip to the desktop and un-zip it. Ask
for help if you do not know how. You should now have a folder
named EclipseLab1 with three files in it: Examples.bjava — a simple
program that runs in ProfessorJ Beginner language, Examples.java —
your first program to run in the Eclipse IDE, and a test library tester.jar.

The first one contains two files Examples.bjava and Examples.java de-
signed to get you started.

The second one Tester ads the file that provides the test harness code.

• Open the file Examples.bjava in ProfessorJ Beginner language in DrScheme.
Read the code quickly (you have seen this kind of program a number
of times before) and run it once.

2



Lab 6 c©2008 Felleisen, Proulx, et. al.

The second file, Examples.java is an equivalent program that runs in
Eclipse with the tester library replacing the testing library we used in
ProfessorJ.

Start working with the Examples.java file.

• Highlight the src in the Package Explorer pane and select Import.

• Under Select an import source choose File System and click on Next.

• Next to From directory click on Browse and select the folder Eclipse-
Lab1.

• Highlight the EclipseLab1 in the left pane, then select the Examples.java
file in the right pane.

• Leave all other selections unchanged and click on Finish.

• You should be back in the main Eclipse view. In the Package Explorer
pane under the src in your Project1 there should be a default package
with the file Examples.java in it. Open the file.

Now you can see how the program differs from the one you ran in
ProfessorJ.

• In our next step we select the libraries that our program needs. For
now, we need only one library, saved in the tester.jar file.

– In the Project menu on the top select Properties.

– On the left hand side select Java Build Path.

– On the right hand side select Add External JARs...

– Browse to locate your tester.jar file. (You should keep this file in
an easily accessible directory that will not change over time.)

– Select OK on the bottom right.

You should notice that the red marks that highlighted errors in your
Examples.java file have disappeared. Your project is now ready to run.

• Right-click on Examples.java and select Run as Java Application. If it
asks for main, select Main.

3



c©2008 Felleisen, Proulx, et. al. Lab 6

• The program should run and produce output in the Console window
on the bottom. However, the window is very small. If you double-
click on any window tab in the Eclipse workspace, it will get resized
to cover the whole Eclipse pane. Double-clicking on its tab again re-
stores it back to the original view. Try it with the source files as well.

You see that the output is very similar to what we saw in ProfessorJ.

Learn to edit and save your work.

First, modify your file Examples.java adding two more examples of books to
the Examples class. Run your program.

You can create an archive of your project by highlighting the project,
then choose Export then select Zip archive. Eclipse will ask you for a folder
where to place the zip file and will let you choose the name for the zip file.

Your project will remain in the Eclipse workspace, but now you have
saved a copy that will not change as you keep working.

Visibility modifiers in Java.

Notice that the Examples class definition starts with the word public. Java
requires that exactly one class or interface in each file is declared as public,
and the name of the file must match the name of this public interface or
class.

The public keyword represents the visibility modifier that informs the Java
compiler about the restrictions on what other programs may refer to the
particular classes, fields, or methods. We will learn about these visibility
modifiers soon.

Learn to edit the program and design the test cases.

Change the class Book so that contains the information about the date when
the book is due to be returned to the library. Of course, you need to add the
Date class.

Design the method isOverdue that determines whether the book is over-
due on a given day. Assume throughout that each month has 30 days and
there are no leap years.

Add tests for the method to the Examples class, following the technique
already illustrated there.

4



Lab 6 c©2008 Felleisen, Proulx, et. al.

Designing tests using the Tester test harness

The Examples class is very similar to what we have seen in ProfessorJ. let us
look at the differences:

• It starts with

import tester.*;

identifying the library we will need - just as we did with the draw,
geometry, and colors libraries.

• The class Examples must be declared public and must have a public
constructor:

//----------------------------------------------------
// Examples class for the Book class
public class Examples implements IExamples{
public Examples(){}

...
}

• Finally, class Examples must implement IExamples interface that con-
sists of a single method public void tests(Tester t);
We define the tests in a method that implements the IExamples inter-
face as follows:

// combine all tests
public void tests(Tester t){

// test the method before in the class Book
t.checkExpect(book1.before(2000), false, "Book before a");
t.checkExpect(book2.before(2000), true, "Book before b");

}

Each test is an invocation of the method checkExpect by an instance of
the class Tester.

The method requires two or three arguments, the actual value, and
the expected value, and, optionally, the name of the test. It compares
the given values and records the result of the test for the final report.

The third parameter does not have to be supplied, but it helps us in
remembering what was the purpose of that test.

5



c©2008 Felleisen, Proulx, et. al. Lab 6

6.2 Understanding Constructors: Data Integrity; Signaling Errors

Goals

In this part of this lab you will practice the use of constructors in assuring
data integrity and providing a better interface for the user.

Designing constructors to assure integrity of data.

We start with the Date class we used to check for overdue books.

// to represent a calendar date
class Date {

int year;
int month;
int day;

Date(int year, int month, int day){
this.year = year;
this.month = month;
this.day = day;

}
}

and a simple set of examples:

public class Examples {
public Examples() {}

// good dates
Date d20060928 = new Date(2006, 9, 28); // Sept 28, 2006
Date d20071012 = new Date(2007, 10, 12); // Oct 12, 2007

// bad dates
Date b34453323 = new Date(3445, 33, 23);

}

• Create a project Date in the Eclipse and add a new file named Exam-
ples.java. Copy into this file the definition of the class Date and the
class Examples. Delete from the Examples class all examples of data
and test cases that deal with books and authors - leave only the ex-
amples of dates and test cases for any method you have designed for
the Date class.

• Import the tester library and add the tester.jar to the project as external
JAR. Now run the project.

6



Lab 6 c©2008 Felleisen, Proulx, et. al.

• Add the examples above and run the project again.

Of course, the third example is pure nonsense. Only the year is possi-
bly valid - still not really an expected value. To validate the date com-
pletely (taking into account all the special cases for different months,
as well as leap years, and the change of the calendar at several times
in the history) is a project on its own. For the purposes of learning
about the use of constructors, we will only make sure that the month
is between 1 and 12, the day is between 1 and 30, and the year is
between 1000 and 2200.

• Did you notice the repetition in the description of the valid parts of
the date? This suggests, we start with the following methods:

– method validNumber that consumes a number and the low and
high bound and returns true if the number is within the bounds
(inclusive).

– methods validDay, validMonth, and validYear designed in a simi-
lar manner.

Design at least one of these methods - you can finish the others at
home.

• Once you have done so, change the constructor for the class Date as
follows:

public Date(int year, int month, int day){
if (this.validYear(year))

this.year = year;
else

throw new IllegalArgumentException("Invalid year in Date.");

if (this.validMonth(month))
this.month = month;

else
throw new IllegalArgumentException("Invalid month in Date.");

if (this.validDay(day))
this.day = day;

else
throw new IllegalArgumentException("Invalid day in Date.");

}

This example show you how you can signal errors in Java. The class
IllegalArgumentException is a subclass of the RuntimeException. Includ-
ing the clause

7



c©2008 Felleisen, Proulx, et. al. Lab 6

throws new ...Exception("message");

in the code causes the program to terminate and print the specified
error message. Later we will learn how we can customize the error
reporting and also how to respond to errors without terminating the
program execution.

• Make additional examples with invalid day, invalid month, and in-
valid year. Run the program, then comment out one invalid example
at a time, to see that all checks work correctly.

Overloading constructors to provide flexibility for the user: providing
defaults.

When entering dates in the current year it is tedious to always have to enter
2008. We can make avoid the need to type in the year by providing an
additional constructor that requires the user to give only the day and month
and assumes that the year is the current year (2008 in our case).

Remembering the single point of control rule, we make sure that the new
overloaded constructor defers all of the work to the primary full construc-
tor:

public Date(int month, int day){
this(2008, month, day);

}

Add examples that use only the month and day to see that the construc-
tor works properly. Include examples with invalid month or year as well.
(Of course, you will have to comment them out.)

Overloading constructors to provide flexibility for the user: expanding
the options.

The user may want to enter the date in the form ”Oct 20 2006”. To make
this possible, we can add another constructor:

public Date(String month, int day){
this(1, day); // make an instance with a wrong month
if (month.equals("Jan"))

this.month = 1;
else if ...

8



Lab 6 c©2008 Felleisen, Proulx, et. al.

else
throw new IllegalArgumentException("Invalid month in Date.");

}

To check that it works, allow the user to enter only the first three months
(”Jan”, ”Feb”, and ”Mar”). The rest is tedious, and in a real program would
be designed differently.

Finish the work at home and save it as a part of your portfolio.

6.3 Converting a larger program to an Eclipse project

When the program gets larger, we no longer want to keep all class defi-
nitions in one file. Typically, in Java every class or interface is defined in
its own file, though at times we may group together related classes and
interfaces.

• Download the program list-of-songs-acc.ijava that is the solution to the
second problem of last week’s lab. Create in Eclipse a new project
with the name Songs.

• We want to translate the program into an Eclipse project. The original
program consists of four classes: Song, MtLoS, ConsLoS, and Examples
as well as one interface ILoS. We will divide this program into three
files: Song.java, Examples.java and ILoS.java.

Copy the class definition for he class Song into a new file named
Song.java. Make the class and its constructor public.

• Copy the classes that represent a list of songs into another new file
names ILoS.java and make the interface ILoS public.

• Look at all the problems Eclipse signals. In Java, every method de-
fined in an interface is considered public even if it does not say so
explicitly. Therefore, every time you implement a method defined in
an interface, you must give it the public visibility.

Do the necessary corrections until all errors disappear.

• Now create a new file Examples.java and copy into if the definition of
the Examples class.

• Add the import tester.∗; statement at the beginning and add the tester.jar
library to the project.

9



c©2008 Felleisen, Proulx, et. al. Lab 6

• Make the Examples class implement the IExamples interface and set
the visibility for both the class and its constructor to public.

We are almost done. The only remaining task is to convert the test cases
from ProfessorJ to tests managed by the tester library.

Here is an example of how it works. The original tests for the method
count were defined as:

// * Count Examples
boolean countTests =

((check this.mtlos.count() expect 0) &&
(check this.list1.count() expect 1) &&
(check this.list2.count() expect 3));

They translate to the tester tests as follows:

// * Count Examples
void countTests(Tester t){

t.checkExpect(this.mtlos.count(), 0);
t.checkExpect(this.list1.count(), 1);
t.checkExpect(this.list2.count(), 3);

}

• Convert the remaining test cases in a similar way.

• We still need to implement the interface IExamples that is defined as
follows:

interface IExamples{
public void tests(Tester t);

}

The method tests will group together all the test methods we have
designed as follows:

// Run all tests:
public void tests(Tester t){

countTests(t);
totalSizeTests(t);
...

}

• Finish the design of the tests method and run the program.

10


