
Lab4 c©2008 Felleisen, Proulx, et. al.

4 Designing Methods – Part 2

Methods for Unions and Self-Referential Data

We will focus on geometric shapes - a circle, a square, and a shape that is
a combination of two shapes, the top and the bottom one. Recall the data
definition as given by the class diagram:

+-------+
| Shape |<--------------------------+
+-------+ |
+-------+ |

| |
/ \

--------------------------------------- |
| | | |

+--------------+ +--------------+ +--------------+ |
| Square | | Circle | | Combo | |
+--------------+ +--------------+ +--------------+ |

+-| Posn nw | +-| Posn center | | Shape top |----+
| | int size | | | int radius | | Shape bottom |----+
| | IColor color | | | IColor color | +--------------+
| +--------------+ | +--------------+
+----+ +-----------+

| |
v v

+-------+
| Posn |
+-------+
| int x |
| int y |
+-------+

1. Design the method totalArea that computes the total area of a shape.
For the shape that consists of two components add the areas - as if
you were measuring how much paint is needed to paint all the com-
ponents.

You will need to use math functions, such as square root. The follow-
ing example shows how you can use the math function, and how to
test doubles for equality. (You can only make sure they are different
only within some given tolerance.)

1

c©2008 Felleisen, Proulx, et. al. Lab4

class Foo{
double x;

Foo(double x){
this.x = x;}

double squareRoot(){
return Math.sqrt(this.x);}

}

class Examples {
Examples () {}

Foo f = new Foo(16.0);

boolean testSquared =
check this.f.squareRoot() expect 4.0 within 0.01;

}

2. Design the method moveBy that produces a new shape moved by the
given distance in the vertical and horizontal direction.

3. Design the method isWithin that determines whether the given point
is within this shape.

4. Of course, we would like to draw the shapes on a canvas. Design
the method drawShape that draws this shape on the given Canvas. The
following code (that can be written within the Examples class) shows
how you can draw one circle:

import draw.*;
import colors.*;
import geometry.*;

class Examples{
Examples() {}

Canvas c = new Canvas(200, 200);

boolean makeDrawing =
this.c.show() &&
this.c.drawDisk(new Posn(100, 150), 50, new Red());

}

2

Lab4 c©2008 Felleisen, Proulx, et. al.

The three import statements on the top indicate that we are using
the code programmed by someone else and available in the libraries
named draw, colors, and geometry. Open the Help Desk and look under
the Teachpacks for the teachpacks for How to Design Classes to find out
more about the drawing and the Canvas.

4.1 Shark and Fish

Fish swim across the screen from right to left. There may be one fish, or
a whole school of fish, or none at a time. A hungry shark swims in place
at the left side, moving only up and down, controlled by the "up" and
"down" keys. It tries to catch and eat the fish. It gets bigger with each fish
it eats, it keeps getting hungrier and hungrier as the time goes on between
the catches. It dies of starvation, if not fed in time.

Once you design all methods for these classes, you can see the anima-
tion and play the game by importing the necessary library classes, changing
to the ProfessorJ Intermediate Language and adding the phrase extends World
after the class OceanWorld beginning of the OceanWorld definition.

Design this game.

The Shark class

1. Design the class Shark to represent a shark swimming up and down.

2. Design the method onKeyEvent that consumes a String that represents
the key a user pressed and produces a new Shark at the location de-
termined by the key the user pressed. If the user pressed the "up"
key the new Shark has moved up, if the user pressed the "down" key,
the new Shark has moved down. If the user pressed any other key, the
method produces the same Shark that invoked the method.

3. Design the method draw that consumes a Canvas and draws the shark
on the Canvas in its current position.

4. Design the method onTick that produces a Shark a bit hungrier than
before, until the shark is declared dead. Think of the good way to
represent the liveness of the Shark.

The Fish

1. Design the class Fish to represent one fish swimming in the ocean.

3

c©2008 Felleisen, Proulx, et. al. Lab4

2. Design the method onTick that produces a fish moved to the left by a
fixed distance.

Note: Later we may add some random movement up and down, or
even randomly change the speed of swimming. However, when de-
signing a complex program, it is the best to get down the basic func-
tionality and add more features later. This is called iterative refinement.
(You may have seen it already in the previous semester.)

3. Design the method escaped that produces a boolean value true if the
fish swam outside of the visible Canvas, i.e. its horizontal coordinate
is negative.

4. Design the method draw that that consumes a Canvas and draws the
fish on the Canvas in its current position.

The Ocean World

We now design the whole scene: the fish and the shark swimming in the
blue ocean, the shark eating the fish, all swimming along.

1. Design the class OceanWorld that consists of one Shark and one Fish.
We also specify the size of the ocean scene (that will become the size
of the Canvas.

(Note: Again, we choose to handle the simple case first: one fish only.)

2. Design the method sharkFoundFish that determines whether a shark
has found a fish. In which class should this method be defined? Can
it be useful if we change the problem to include a whole school of
fish?

3. Design the method eatFish in the class Shark that (no pun intended)
consumes the given Fish and produces a fatter Shark.

4. Design the method onTick that produces a new OceanWorld as follows:

• An escaped fish is replaced by a new one that appears at a ran-
dom height, colse to the right edge of the Canvas.

• If the shark gets close to the fish, it eats the fish, gets fatter and a
new fish appears at a random height on the right hand side.

4

Lab4 c©2008 Felleisen, Proulx, et. al.

• If the shark dies of starvation, the method produces endOfWorld
with the message announcing the shark’s demise.

• If none of the above applies, the fish moves as given by its onTick
method, and the shark starves as given by its onTick method.

Make sure you test this method carefully before running any simula-
tion.

5. Design the method onKeyEvent that produces a new OceanWorld with
the same Fish as before and the shark moved in response to the key
pressed by the user in the manner already determined by the on-
KeyEvent method in the Shark class.

6. Design the method draw that draws the ocean scene: the blue ocean,
the shark, and the fish.

7. With just a little help you can now play the game. The TAs will tell
you how.

Note: The following code can be used to generate a random height for
the new fish:

// produce a random initial height of the fish
int randomHeight(){

return new Random().nextInt() %
}

When you add this method you must also add to the beginning of the
program the following import statemet:

import java.util.Random;

5

