
Lab 12 c©2008 Felleisen, Proulx, et. al.

Algorithm Complexity: Stress Tests

Download the provided zip file Lab12-sorting.zip and unzip it. Create a new
Eclipse project named Lab12-sorting. Add the given code to the project. You
should have the following Java files:

• class Examples defines and runs all the tests for lists of random inte-
gers.

• class Algorithms implements the imperative insertion sort and the quick-
sort using the ArrayList<T>, and the functional insertion sort using
the AList<T> classes defined in the same file.

• class IntComp implements the Comparator for integers.

• class StringComp implements the Comparator for Strings, based on their
length.

• class Sorter is a wrapper that enables us to print the timing results
neatly. The file includes two implementations, Quick and Insert. It
also includes a separate but similar class InsertList that wraps the in-
sertion sort for AList classes and includes two methods fillList for first
converting the List data to AList and result that converts the sorting
result saved as AList to an ArrayList.

• class Timing provides a simple way to interact with the system clock.

• class StringExamples defines and runs all the tests for lists of random
Strings.

For this section of the lab we are going to quickly explore the differences
between O(n2) and average O(nlogn) sorting algorithms.

Insertion Sort:

As mentioned in class, the running time of insertion sort is approximately
O((n ∗ (n + 1))/4) = O(n2). This is because in order to insert each element
into the sorted portion of the List we must compare k/2 items on average,
where k is the size of the sorted portion.

In the Algorithms class you can see an implementation of Insertion Sort
which sorts an ArrayList<T> in-place.

1



c©2008 Felleisen, Proulx, et. al. Lab 12

Quick Sort:

This algorithm is considered one of the best in-place sorting algorithms
because it is easy to implement and runs pretty fast. Have a look at the
implementation in the Algorithms class.

Your Task

If you try to run the Examples class you will notice there is a RuntimeExcep-
tion that’s thrown. This is because there is a missing implementation. As
further practice with Comparators, you need to implement the IntComp class
which compares two Integers using available functions.

You must then add a new instance of your class to the Examples main
method (see where the null is?) so that the sorting tests will work.

Once you have implemented the class and created an instance, run the
Examples class to see what it produces. Check the output to see if it is
indeed sorted... if not you will need to fix your comparator!

When the sorts work correctly, run the Examples class again, but this
time modify the source to run 3 or 4 timed sort tests by changing the vari-
able loops appropriately. Note the loop which uses this variable.

Now run the similar code in the class StringExamples. It mimics the Ex-
amples class, but deals with lists of random Strings. The sorting algorithms
and their wrappers use generic types and require no changes.

Results

You should get some reasonable differences between the times of Insertion
and Quick Sort even on these smaller ArrayLists.

Sketch a plot of your results on a piece of paper and observe the differ-
ence between the slopes of the plots for the two insertion sorts and the plot
for the quicksort.

Look over the interesting portions of the supplied code:

• static and Generic methods in the Algorithms class

• The fillData(. . . ) method in the Examples class... try to understand
what’s going on there

• The abstract class Sorter and its implementations that wrap calls to the
Algorithms code (remember the Function Objects?) and the methods
which use them in the Example class.

2



Lab 12 c©2008 Felleisen, Proulx, et. al.

• And check out the Timing for a way to query the System for accurate
time counts and what we can do with them.

Visitors

In this section you will get a chance to work with the code from yesterday’s
lecture on the Visitors.

Download the provided zip file Lab12-visitors.zip and unzip it. Create a
new Eclipse project named Lab12-visitors. Add the given code to the project.
You should have the following Java files: PieMan.java and ListMan.java. The
file ListMan.java contains a similar code, but written in the contest of our
standard AList classes. You may find it easier to read that code first.

• The file PieMan.java defines the code we covered in class yesterday
and adds test code. There are no comments anywhere. However, the
class diagram may help. Read the code and add purpose statements
to the classes and methods.

• Run the program, using the tester library for the testing support.

• Look at the definitions of the test cases and make sure you under-
stand how the code is organized.

• The interface IPieMan has a method boolean containsTop(Object o) com-
mented out. The purpose is to determine whether the pie contains
the given topping. Make a list of all that you have to do to implement
this method.

• Make examples of the use of this method in the Examples class.

• Add all methods and classes needed to implement this method cor-
rectly.

• If you have time left look at the implementation of the same methods
in the context of a recursively defined AList class hierarchy and add
the contains method there as well.

3


