
Exercise Set 11 c©2008 Felleisen, Proulx, et. al.

11 Using Java Collections; JUnit

In this assignment you should try to write as little code as possible - using
the Java Collections Framework classes for getting the work done. Also, you
should use JUnit for all tests.

Portfolio Programs: The Java Collections Framework

Download the file Words.java and start a project. The class Words contains
some Strings and ArrayList<String> data that we will analyze. Add
a class Algorithms where you will implement the solutions to the follow-
ing problems. The tests, of course, are done using JUnit.

Problem 1

Design the following two variants of a method in the Algorithms class
that reverses the order of the words in the given ArrayList<String>
(we assume each String is one word:

1. Design the method reverseProduce that takes one argument of the
type ArrayList<String> and produces a new ArrayList<String>
that contains all words from the given list, but in a reverse order.

So, if the original ArrayList<String> contained the Strings
["who" "what" "why"] the new ArrayList<String> will con-
tain the Strings
["why" "what" "who"].

2. Design the method reverseInSitu with the void return type that
mutates the given ArrayList<String> by reversing the words it
contains.

3. Finally design the method printWords that consumes an argument
of the type ArrayList<String> and prints each entry on a new
line, traversing the ArrayList<String> using the ’for-each’ loop
that uses the Java Iterator. Use

System.out.println(someString);

to print each line.

1

c©2008 Felleisen, Proulx, et. al. Exercise Set 11

Problem 2: Working with the StringTokenizer

Continue working with the same project, designing your solutions in the
Algorithms class.

1. Look up the StringTokenizer class in JavaDocs. The methods
there allow you to traverse over a String and produce one word at
a time delimited by the selected characters. Read the examples. Then
write the method makeWords that consumes one String (that repre-
sents a sentence with several words, commas, and other delimiters and
produces an ArrayList<String> of words (Strings that contain
only letters — we ignore the possibility of words like ”don’t”). The
delimiters you should recognize are the comma, the semicolon, and
the question mark.

2. The text in theArrayList<String> words in the class Words is a
secret encoding. It represents verses from a poem - if you read only
the first words. Design the method firstWord that produces the
first word from a given String. Use it to decode the poem.

Problems

11.1 Stacks and Queues

The goal of this exercise is to use the Java libraries to do the work for us.

1. In looking for a path from one city to another we keep track of the
visited cities. For each city we visit, we remember not only the in-
formation about that city, but also what city did we come from as we
traveled to the newly visited city.

Use the HashMap to keep track of the visited cities. Use the visited
city as the Key and the city of origin as the Value. So, for example,
we may have the following information about cities and traveling be-
tween them:

Boston, MA - visited first: came from ’null’
Albany, NY - we came from Boston, MA
Concord, NH - we came from Boston, MA
Montpellier, VT - we came from Concord, NH
Trenton, NJ - we came from NY
Harrisburg, PA - we came from Trenton, NJ

2

Exercise Set 11 c©2008 Felleisen, Proulx, et. al.

Define the class Path that records this information about the City
data used in the Lab 11. Use HashMap from the Java Collections Frame-
work. Make sure you include the above example in your tests - getting
all the information about for these cities by reading the file caps.txt
that has the data for the capitals of the 48 congruent US states. Use
the file InFileCityTraversal to read in the file - save the data to an
ArrayList.

2. Define in the class Path the method pathTo that produces an ArrayList
of City-s we need to go through to get to the given City. So, for the
above example, we would expect the following results:

pathTo(Boston, MA) --> [Boston, MA]
pathTo(Albany, NY) --> [Boston, MA; Albany, NY]
pathTo(Harrisburg, PA) --> [Boston, MA;

Albany, NY;
Trenton, NJ;

Harrisburg, PA]

3. Define in the class Path the method contains that determines whether
the given City is in this Path.

4. Define the method directionsFromTo that consumes the city of
origin and our desired destination and produces the travel directions
as a String. For example,

directionsFromTo(Boston, MA : Boston, MA) produces:
"Start in Boston, MA
End in Boston, MA"

directionsFromTo(Boston, MA : Harrisburg, PA) produces:
"Start in Boston, MA
Boston, MA to Albany, NY
Albany, NY to Trenton, NJ
Trenton, NJ to Harrisburg, PA
End in Harrisburg, PA"

We now want to keep track of the neighbors of the cities we visited
(and we plan to visit soon) (the ToDo checklist). So, for example, if
we visit Boston, MA, we will add to the ToDo checklist all of its

3

c©2008 Felleisen, Proulx, et. al. Exercise Set 11

neighbors. However, there are some restrictions. We do not add a
neighbor to the checklist if it is already in the Path.

The interface ToDo describes the desired behavior:

interface ToDo{
// add a new neighbor to the ToDo checklist
// unless it already appears in the given Path
public void add(City city, Path path);

// remove the given city from the ToDo checklist
// return false if the city is not in the checklist
public boolean remove(City city);
}

5. Define the class ToDoStack that keeps track of the neighbors to visit
soon that uses the Java Stack class to implement the ToDo interface
as a stack.

6. Define the class ToDoQueue that keeps track of the neighbors to visit
soon that uses the Java LinkedList class to implement the ToDo
interface as a queue.

Testing of the Stacks and Queues Problem

Of course, you need to test all methods as you are designing them. Design
the tests in two stages:

1. First design the tests using the Examples class and the tester package
as we have done before.

2. Now convert all tests into JUnit tests. Hand in both versions.

11.2 William Shakespeare

The Application

Have you ever wondered about the size of Shakespeare’s vocabulary?
For this assignment you will write a program that reads its input from a text
file and lists the words that occur most frequently, together with a count of
how many different words occur in the file. If this program were to run

4

Exercise Set 11 c©2008 Felleisen, Proulx, et. al.

on a file that contains all of Shakespeare’s works, it would tell you the ap-
proximate size of his vocabulary, and how often he uses the most common
words.

Hamlet, for example, contains about 4542 distinct words, and the word
”king” occurs 202 times.

The Problem
Start by downloading the file HW11.zip and making an Eclipse project

that contains these files. Run the project, to make sure you have all pieces
in place. The Examples class uses the tester package as we have done
before.

You are given the file Hamlet.txt that contains the entire text of Hamlet
and a file InFileReader.java that contains the code that generates the words
from the file Hamlet.txt one at a time, via an iterator. Save the file Hamlet.txt
in the Eclipse project directory (where you find the subdirectories src and
bin).

Note: Here you will use the imperative Iterator interface that is a part of Java
Standard Library. Make sure to look up the documentation for this interface and
understand how it works.

Your tasks are the following:

1. Design the class Word to represent one word of Shakespeare’s vocab-
ulary, together with its frequency counter. The constructor takes only
one String (for example the word ”king”) and starts the counter at
one. We consider one Word instance to be equal to another, if they
represent the same word, regardless of the value of the frequency
counter. That means that you have to override the method equals()
as well as the method hashCode().

2. Design the class that implements the Comparator interface, so that
the words can be sorted by frequencies. (Be careful!) When you are
done, place this class definition as the last part of the class definition
of the class Word. This is called an inner class.

Note: In this program there will be two ways of comparing the instances of
the Word class - by the String that it represents and by the counter for the
word that this instance represents.

5

c©2008 Felleisen, Proulx, et. al. Exercise Set 11

3. Include in the class Word the method that allows you to increment
the counter (using mutation), and a method toString that prints
one line with the word and its frequency.

4. Design the class WordCounter that keeps track of all the words we
have seen so far. It should include the following methods:

// records the Word objects generated by the given Iterator
// for each word record the number of ocurrences
void countGivenWords (Iterator it) { ... }

// How many different Words has this WordCounter recorded?
int words() { ... }

// Prints the n most common words and their frequencies.
void printWords (int n) { ... }

Here are additional details:

5. countAllWords consumes an iterator that generates the words and
builds the collection of the appropriate Word instances, with the cor-
rect frequencies.

6. words produces the total count of different words that have been
consumed.

7. printWords consumes an integer n and prints the top n words with
the highest frequencies (using the toString method defined in the
class Word).

Note: The given code expects that you implement the classes as given,
with the same names and methods. It will then check whether your pro-
gram works correctly. That does not mean you do not need to design
tests.

Testing of the Shakespeare Project

Of course, you need to test all methods as you are designing them. Design
the tests in two stages:

1. For the class Word and the the class WordCounter use a technique
similar to what was done in the past assignments, i.e. design a class
Examples with the necessary sample data and all tests.

6

Exercise Set 11 c©2008 Felleisen, Proulx, et. al.

2. Convert all tests into JUnit tests. Hand in both versions.

11.3 Documentation

Both of the projects should contain complete Javadoc documentation that
should produce the documentation pages without warnings. You do not
need to submit the documentation pages.

7

