Exercise Set 10 (©2008 Felleisen, Proulx, et. al.

10 Assignment

Portfolio Problems: Loops

Finish the third part of Lab 10 that deals with loops.

10.1 Eliza

Our goal is to train our computer to be a mock psychiatrist, carrying on a
conversation with a patient. The patient (the user) asks a series of ques-
tions. The computer-psychiatrist replies to each question as follows. If the
question starts with one of the following (key)words: Why, Who, How,
Where, When, and What, the computer selects one of the three (or more)
possible answers appropriate for that question. If the first word is none of
these words the computer replies ‘I do not know” or something like that.

1. Start by designing the class Reply that holds a keyword for a question,
and an ArrayList of answers to a the question that starts with this
keyword.

2. Design the method randomAnswer for the class Reply that produces
one of the possible answers each time it is invoked. Make sure it
works fine even if you add new answers to your database later. Make
at least three answers to each question.

3. Design the class Eliza that contains an ArrayList of Replys.
4. In the class Eliza design the helper method firstWord that consumes a

String and produces the first word in the String.

The following code reads the next input line from the user. You will
need to find out what was the first word in the patient’s question.
Look up the documentation for the String class (and we gently hint
that the methods trim, toLowerCase, and startsWith may be relevant).

Systemout.println("Type in a question: ");
s = input.nextLine();

Make sure your program works if the user uses all uppercase letters,
all lower case letter, mixes them up, etc.

1



(©2008 Felleisen, Proulx, et. al. Exercise Set10

5. In the class Eliza design the method answerQuestion that consumes the
question String and produces the (random) answer. If the first word
of the question does not match any of the replies, produce an answer
Don’t ask me that. — or something similar. If no first word exists, i.e.,
the user either did not type any letters, or just hit the return, throw an
EndOfSessionException.

Of course, you need to define the EndOfSessionException class.

6. In the Interactions class design the method that repeats asking ques-
tions and providing answers until it catches the EndOfSessionExcep-
tion — at which time it ends the game.

10.2 Selection Sort

Selection Sort algorithms works as follows. When the program traverses
the list of data for the first time, it finds the location of the smallest item in
the list. It then swaps the first item in the list with the smallest one (even if
the smallest one is already in the first spot).

Next time around, it does the same, but only with the rest of the list, i.e.
all items beyond the first one. The third time around, it starts with the third
item, because the first two are already in the correct places.

This is hard to do with the recursively constructed lists, but is much
easier when we can directly swap two items at specific locations, as is the
case when the data is stored in an ArrayList.

In the Algorithms class design a method SelectionSort that consumes an
ArrayList<T> and an instance of a «class that implements
Comparator<T> and mutates the ArrayList<T> so that it is sorted in the
order given by the Comparator<T>.

It is possible to combine all parts of the algorithm into one method, but
we do not want you to design programs that way. Your program should
use the following helper methods:

e swap that swaps in the given ArrayList<T> the elements at the two
given locations.

e findMinLoc finds in the given ArrayList<T> the location of the mini-
mum element among all elements at the location greater than or equal
to the given location. Of course, it also consumes the Comparator<T>.

2



Exercise Set 10 (©2008 Felleisen, Proulx, et. al.

e the main method, selectionSort the implements the algorithm that is
described at the beginning.

Variants

You should hand in two different implementation of this algorithm as fol-
lows:

You can choose to use any of the loops we have seen (including the
Traversal<T>, and its implementation for ArrayList<T>. However, you
should then convert your solutions for minLoc and selectionSort to use either
while loop without the Traversal <T> or for loop without the Traversal <T>
and hand in both solutions.

If your first solution already used one of these loops (while or for), your
second solution should then use the other loop.

Rename your methods as minLocV1 and selectionSortV1.

Tests

Of course, you need to test your methods. Make a simple class of data,
such as a Book or Balloon we have used in the past — but come up with
something different — and define two different Comparators for this class.
Then make examples of lists of these data items and make sure your tests
use both of the Comparators.

Organize youre tests so that the reader can readily see what is the pur-
pose of each test and what data is used in computing the result and in
providing the expected value.



