Exercise Set 1 (©2008 Felleisen, Proulx, et. al.

1 Accumulator-Style Program Design

Portfolio Problems

For each of the following problems work out the solution in four different
ways:

e using the design recipe
e modifying the previous solution by using an acumulator
e implementing the solution using the Scheme loop foldl

e implementing the solution using the Scheme loop foldr

Problems:

Continue with the problem covered in the first lecture and in the lab.
The producer now requires that the profits from the commercials depend
on when the show broadcasts as well as show’s rating.

1. Modify the data definitions so that it includes the information about
the show’s rating (on a scale from 1 to 10) and the show time (recorded]
only as in one of four time categories).

2. Modity the function that computes the show’s profit as follows. The
base profit is multiplied by the show time category (from 1 to 4) and
by the show’d rating factor (one tenth of the show’s rating, i.e. 0.1,
0.2, up to 1.0).

3. Define the function that computes the total profit from the given ad
during the show. Make four versions of this function: a basic one
that follows the Design Recipe, one that uses the accumulator, and two
versions that use foldl and foldr.

4. Problem 31.3.4 in HtDP

Pair Programming Assignment

1.1 Problem

A. Design the data to represent a list of nodes in a graph and a list of
edges connecting the nodes.

(©2008 Felleisen, Proulx, et. al. Exercise Setl

For example, here is a graph and the information to represent:

B<————- SAK——————————— C
| - /
\Y | /
D--———- >E /
-~ | /
| I /
| I /
F I /
\ | /
\ 4
\ | 7/
\%
G

Nodes: A,B,C,D,E,F, G

Edges: (4, B) (B, A) (B, D) (C, A) (C, G) (D, E) (E, A) (E, G) (F, D) (F, G)
(E, G)

There is no ordering of the list of nodes or the list of edges. Each edge
has the source and the target, and so the edge from A to B is different
from the edge from B to A, though it is possible that both exist, as
shown.

Note that each node has a name (typically just one letter) and we
may choose to record its location, so we can later draw the graph on
a Canoas.

B. Design the function neighbors that for a given node and a list of edges
produces a list of all neighbors of the given node. For example, neigh-
bors of the node C above are nodes A and G.

Follow the design recipe precisely. It is sufficient to produce the names|
of the nodes, not the entire information about each neighbor.

C. Define the function neighbors2 that solves the same problem, but uses
the accumulator.

D. Define the function neighbors3 that solves the same problem, but uses
the foldl loop.

Exercise Set 1 (©2008 Felleisen, Proulx, et. al.

E. Define the function neighbors4 that solves the same problem, but uses
the foldr loop.

Note: Use the check-expect format of the testing.ss teachpack to define all
your test cases.
1.2 Problem

We now want to draw the graph on the Canuvas.

A. Design the function draw-node that draws the node as a small red cir-
cle with its letter label in the middle.

B. Design the function draw-edge that draws the given edge as a red line
between the locations of its two endpoints. Think carefully about
what information will this function need to accomplish its task.

C. Create a simple line drawing, represent it as a list of edges, and a list
of nodes. Now design a function draw-edges that draws all edges in a
given graph.

D. Design the function draw-graph that will draw the whole graph on the
Canvas.
1.3 Problem

Your boss tells you that she would like to record for each node of the graph
a list of the names of its neighbors.

A. Design the data definition for Node2 that includes the information
abotu its neighbors. Translate the original data definitions to this one.

B. Design the function find-edges that extracts from a list of Node2 data
the list of all edges in that graph.

C. Design the function draw-graph2 that will draw the whole graph (a
list of Node2 data) on the Canvas.

