Lab 9 (©2007 Felleisen, Proulx, et. al.

9 Javadocs, Raising and Catching Exceptions
Traversals, Mutating ArrayList

Goals

The first part of the lab introduces a several new ideas:

e Documenting programs in the Javadoc style.

e Generating documentation web pages from a properly documented
project.

e Defining and using Java Exceptions.
e Defining and using functional iterators (Traversals).

e Using classes from Java Libraries.

The second part introduces ArrayList class from the Java Collections
Framework library, lets you practice designing methods that mutate Ar-
rayList objects. We will continue to use the generics (type parameters), but
will do so by example, rather than through explanation of the specific de-
tails.

In the third part of the lab you will learn how to how to convert re-
cursive loops to imperative (mutating) loops using either the Java while
statement ot the Java for statements to implement the imperative loops.

9.1 Documentation, Traversals, Exceptions, Java Libraries

For this part download the files in Lab9-sp2007-Student1.zip. The folder con-
tains the files Balloon.java, ImageFile.java, ISelect.java, IChange.java, TopThree.java,]
and Examples.java. In addition, there are several new files: The file Traver-
sal.java defines the Traversal interface, the files AList.java, MTList.java, and
ConsList.java that define a generic cons-list that implements the Traversal
interface. The file IllegalUseOfTraversal.java illustrates the definition of an
Exception class. Finally, the Algorithms.java file shows an implementation of
an algorithm that consumes data generated by a Traversal iterator.

Create a new Project Lab9-Part1 and import into it all files from the zip
file. Again, import the test harness files and jpt.jar.

1

(©2007 Felleisen, Proulx, et. al. Lab 9

Generating Documentation

e Once Eclipse shows you that there are no errors in your files select
Generate Javadoc... from the Project pull-down menu. Select to
generate docs for all files in your project with the destination Lab9-
part1/doc directory.

You should be able to open the index.html file in the Lab9-part1/doc
directory and see the documentation for this project. Compare the
documentation for the class ConsList with the web pages. You see
that all comments from the source file have been converted to the
web document.

Observe the format of the comments, especially the /** at the begin-
ning of the comment. If you do not understand the rules, ask the TA
or one of the tutors, or experiment with new comments. From now on
all of your work should have a proper Javadoc style documentation.

e Now use the documentation to see what are the fields in various
classes and what methods have been defined already.

Defining and Handling Exceptions
o The file IllegalUseOfTraversal.java illustrates the definition of an Excep-
tion class.

The files AList.java, MTList.java, and ConsList.java illustrate how meth-|
ods can throw exceptions when something goes wrong.

The method contains in the class Algorithms illustrates how the meth-
ods that throw exceptions are invoked.

Add tests for the method contains to the Examples class.

e Add to the Examples class a test that will cause the exception to be
raised and observe the consequences. Once you have seen the result,
comment out this testcode.

e Add to the class Algorithms a method filter. The header for the method
is already provided.
ArrayList and Java Libraries
e The class TopThree now stores the values of the three elements in an

ArrayList. Complete the definition of the reorder method. Use the

2

Lab 9 (©2007 Felleisen, Proulx, et. al.

previous two parts as a model. Look up the documentation for the
Java class ArrayList to understand what methods you can use.

9.2 Using ArrayLists and Traversals

In this part of the lab we will work on lists of music albums.

Class for Albums

In Eclipse, start a Project called Lab9-Part2 and import the files from Lab9-
sp2007-Student2.zip. Take a look at the Album class. You ’ll notice that the
fields are private and we provide getter methods for the user who wants to
access a field outside the class. This way, the user can retrieve the value of
a field without changing it.

Task:

Design the class BeforeYear that implements the ISelect interface with
a method that determines whether the given album was recorded before
some fixed year. Remember to test the method.

Using ArrayList with Mutation

Open the web site that shows the documentation for Java libraries
http://java.sun.com/j2se/1.5.0/docs/api/.

Find the documentation for ArrayList.
Here are some of the methods defined in the class ArrayList:

// how many items are in the collection
int size();

// add the given object of the type E at the end of this collection
// false if no space is available
boolean add(E obyj);

// return the object of the type E at the given index
E get(int index);

// replace the object of the type E at the given index

// with the given element

// produce the element that was at the given index before this change
E set(int index, E obj);

(©2007 Felleisen, Proulx, et. al. Lab 9

Other methods of this class are isEmpty (checks whether we have added
any elements to the ArrayList), contains (checks if a given element exists in
the ArrayList — using the equals method), set (mutate the element of the list
at a specific position), size (returns the number of elements added so far).
Notice that, in order to use an ArrayList, we have to add

import java.util. ArrayList;

at the beginning of our class file.
The methods you design here should be added to the Examples class,
together with all the necessary tests.

Task 2:

e Design the method that determines whether the album at the given
position in the given ArrayList of Albums has the given title.

e Design the method that determines whether the album at the given
position in the given ArrayList of Albums was recorded before the
given year.

e Design the method that produces a String representation of the album
at the given position in the album list.

e Design the method that swaps the elements of the given ArrayList at
the two given positions.

9.3 Converting Recursive Loops into Imperative while Loops

We will look together at the first two examples of orMap in the Examples
class.

We first write down the template for the case we already know — the
one where the loop uses the Traversal iterator. As we have done in class,
we start by converting the recursive method into a form that uses the accu-
mulator to keep track of the knowledge we already have, and passes that
information to the next recursive invocation.

Read carefully the Template Analysis and make sure you understand the
meaning of all parts.

Lab 9 (©2007 Felleisen, Proulx, et. al.

TEMPLATE - ANALYSI S:

return-type nethod-nane(Traversal tr){

demm e e eaaaaas +
/1 invoke the methodAcc: | acc <-- BASE-VALUE |
Fomeme e +
nmet hod- nane- acc(Traversal tr, BASE-VALUE);
}
return-type nethod-nane-acc(Traversal tr, return-type acc)
tr.isempty() ... -- bool ean .. PREDI CATE
if true:
acc -- return-type ::BASE-VALUE
if fal se:
Frmmmm e +
] tr.ogetFirst() | ... -- E 11 CURRENT
T T +
updat e(T, return-type) -- return-type ::UPDATE
E e +
i.e | update(tr.getFirst(), acc) |
e T T +
B +
| tr.getRest() | -- Traversal <T> :: ADVANCE
L +
nmet hod- name(tr.getRest(), return-type) -- return-type
i.e.: ... method-name-acc(tr.getRest(), update(tr.getFirst(), acc))

Based on this analysis, we can now design a template for the entire problem — with the solution
divided into three methods as follows:

COVPLETE METHOD TEMPLATE:
met hod- nanme- acc(Traversal tr,| BASE-VALUE |);

}

<T> return-type nethod-name(Traversal <T> tr, return-type acc){

return acc;

el se

Fomm e - +
return nethod-name-acc(| tr.getRest() |,

e +
e e e e e e e e e e e eiaa-- +
| update(tr.getFirst(), acc) |);
e e e e e e e e e e e e eeaaao- +

}

<T> return-type update(T t, return-type acc){
}

(©2007 Felleisen, Proulx, et. al. Lab 9

Task 3:

e Look at the first two variants of the orMap method (the recursively
defined variant and the variant that uses the while loop. Identify the
four parts (BASE-VALUE, Termination/Continuation PREDICATE,
UPDATE, and ADVANCE) in each of them.

Look also at the tests in the Examples class.
e After you understand how the while loop works, design two vari-

ants of the method that produces a new ArrayList that contains all
elements of the original list that satisfy the given ISelect predicate.

Test the methods by producing all albums released before the given
year.

e Design and test two variants of the andMap method that determines
whether all elements of a given list satisfy the given ISelect predicate.

Test the methods by producing all albums released before the given
year.

Converting while loops into for loops

If you have the time left, repeat all the parts of Task 3 with the remaining
two variants of the orMap — namely the one that uses the for loop with the
Traversal and the one that uses counted for loop.

