
Lab 8 c©2007 Felleisen, Proulx, et. al.

8 Designing Tests for State Change
Abstracting with Function Objects
Introducing Type Parameters

Goals

In the first part of this lab you will learn how to correctly design tests for
the methods that change the state of an object.

In the second part of the lab you will learn to abstract over the func-
tional behavior.

In the third part you will get the first introduction to the abstraction
over the type of data using type parameters.

8.1 Designing Tests for State Change

For this part download the files in Lab8Sp2007-s1.zip. The folder contains
the files ImageFile.java, ISame.java, ISelect.java, SmallImageFile.java, AList.java,
MTList.java, ConsList.java, and Examples.java, as well as TestHarness.java.

Starting with partially defined classes and examples will give you the
opportunity to focus on the new material and eliminate typing in what
you already know. However, make sure you understand how the class is
defined, what does the data represent, and how the examples were con-
structed.

Create a new Project Lab8Part1 and import into it all of the given files.
Also import jpt.jar from the previous lab.

• Design the method crop that changes the dimensions of an ImageFile
object to the given width and height. The Examples class contains com-
ments on what needs to be done to design the tests. Follow the outline
given by the comments to design the needed tests.

• Design the method changeName that allows us to change the name
field of an ImageFile object. Design the tests.

8.2 Abstracting with Function Objects

We will now practice the use of function objects. The only purpose for defin-
ing the class SmallImageFile is to implement one method that determines
whether the given ImageFile object has the desired property. An instance

1



c©2007 Felleisen, Proulx, et. al. Lab 8

of this class can then be used as an argument to a method that deals with
ImageFiles.

1. In the Examples class design the tests for the class SmallImageFile.

2. Design the method allSmallerThan40000 that determines whether all
items in a list are smaller that 40000 pixels. The method should take
an instance of the class SmallImageFile as an argument.

3. Design the class NameShorterThan4 that implements the ISelect inter-
face with a method that determines whether the name in the given
ImageFile object is shorter than 4.

Make sure in the class Examples you define an instance of this class
and test the method.

4. Design the method allNamesShorterThan4 that determines whether all
items in a list have a name that is shorter than 4 characters. The
method should take an instance of the class NameShorterThan4 as an
argument.

5. Design the method allSuch that that determines whether all items in
a list satisfy the predicate defined by the select method of a given
instance of the type ISelect. In the Examples class test this method
by abstracting over the method allSmallerThan40000 and the method
allNamesShorterThan4.

6. For the first etude, at home, follow the same steps as above to design
the method anySuch that that determines whether there is an item a
list that satisfies the predicate defined by the select method of a given
instance of the type ISelect.

8.3 Abstracting over the Datatype: Generics

For this part download the files in Lab8Sp2007-s2.zip. The folder contains
the files ImageFile.java, ISame.java, ISelect.java, SmallImageFile.java, AList.java,
MTList.java, ConsList.java, and Examples.java, as well as TestHarness.java.

Create a new Project Lab8Part2 and import into it all the given files.
Again, use jpt.jar from the previous lab.

Look at the files. The interface ISelect now includes a type parameter T:

2



Lab 8 c©2007 Felleisen, Proulx, et. al.

public interface ISelect<T> {
/* Return true if this Object of the type T should be selected */
public boolean select(T o);

}

That means that the implementing class can decide what type of data
should be used as the argument to the select method. This greatly simplifies
the class SmallImageFile:

/* Select image files smaller than 40000 */
public class SmallImageFile implements ISelect<ImageFile> {

/* Return true if the size of the given ImageFile is smaller than 40000 */
public boolean select(ImageFile o) {

return o.height * o.width < 40000;
}

}

Similarly, the ISame interface also provides a type parameter for its ar-
gument:

interface ISame<T>{
// is this object the same as the given one?
boolean same(T that);

}

The implementation of the same method in the class ImageFile is then
greatly simplified:

// is this imagefile the same as the given one?
public boolean same(ImageFile that){

return this.name.equals(that.name) &&
this.width == that.width &&
this.height == that.height &&
this.kind.equals(that.kind);

}

Look at the class definition for the class ImageFile to see the use of the
type parameter there.

Moreover, the classes that represent a list of arbitrary items can now
specify the type of items that can be included in the list construction. How-
ever, because the class implements a parametrized interface ISame, the use
of type parameters is quite complicated. For now, you can just use the im-
plementation and do not have to follow every detail of the use of the type
parametrs there.

Re-do all of the problems from the previous part, but using the type
parameters

3



c©2007 Felleisen, Proulx, et. al. Lab 8

1. In the Examples class design the tests for the class SmallImageFile, just
as you did before.

2. Design the method allSmallerThan40000 that determines whether all
items in a list are smaller that 40000 pixels. The method should take
an instance of the class SmallImageFile as an argument.

3. Design the class NameShorterThan4 that implements the ISelect<ImageFile>
interface with a method that determines whether the name in the
given ImageFile object is shorter than 4.

Make sure in the class Examples you define an instance of this class
and test the method.

4. Design the method allNamesShorterThan4 that determines whether all
items in a list have a name that is shorter than 4 characters. The
method should take an instance of the class NameShorterThan4 as an
argument.

5. Design the method allSuch<T> that that determines whether all items
in a list (of items of the type T) satisfy the predicate defined by the se-
lect method of a given instance of the type ISelect<T>. In the Examples
class test this method by abstracting over the method allSmallerThan40000
and the method allNamesShorterThan4.

6. For the second etude, at home, follow the same steps as above to
design the method anySuch that that determines whether there is an
item a list that satisfies the predicate defined by the select method of
a given instance of the type ISelect.

4


