
Lab 6 c©2006 Felleisen, Proulx, et. al.

6 Starting in Eclipse

Goals

In the first part of this lab you will learn how to work in a commercial
level integrated development environment IDE Eclipse, using the Java 1.5
programming language. There are several step in the transition from Pro-
fessorJ:

1. Learn to set up your workspace and launch an Eclipse project.

2. Learn to manage your files and save your work.

3. Learn the basics of the use of visibility modifiers in Java.

4. Learn the basics of writing test cases in Java.

6.1 Learn to set up your workspace and launch an Eclipse project.

Start working on two adjacent computers, so that you can use one for look-
ing at the documentation and the other one to do the work. Find the web
page on the documentation computer:

http://www.ccs.neu.edu/howto/howto-windows-n-unix-homedirs.html

and follow the instructions to log into your Windows/Unix account on
the work computer.

Next, set up a workspace folder in your home directory where you will
keep all your Java files. This should be in

z:\\eclipse\workspace

Note that z: is the drive that Windos binds your UNIX home directory.

Start the Eclipse application.
DO NOT check the box that asks if you want to make this the default

workspace for eclipse

Starting a new Project

1

c©2006 Felleisen, Proulx, et. al. Lab 6

• In the File menu select New select Project.

• In the pane that opens, under Java wizard select Java Project.

• Name the project Project1
You can select a different name, but here we will refer to this project
as Project1.

• In the bottom part select Create separate source and output folders
and click on Next.

• In the next pane just hit Finish.

• Now in the Package Explorer pane there should be Project1. Click on
the triangle or the plus sign on the side to open up the sub-parts, and
do so again next to src line.

• Download the file EclipseLab.zip to the desktop and un-zip it. Ask
for help if you do not know how. You should now have a folder
named EclipseLab with three folders in it: Book, BlobWorld, and UFO.

The first one contains two simple classes Book.java and BookTests.java
designed to get you started. The second one BlobWorld has three files,
Blob.java and TimerTests.java that illustrate the use of the world.jar li-
brary as well as the world.jar library itself. The third folder contains
nearly identical files to the ones you worked with in your last lab.

You will start working with the first folder.

• Highlight the src in the Package Explorer pane and select Import.

• Under Select an import source choose File System and click on Next.

• Next to From directory click on Browse and select the folder Book.

• Highlight the Book in the left pane, then select both files in the right
pane.

• Leave all other selections unchanged and click on Finish.

• You should be back in the main Eclipse view. In the Package Explorer
pane under the src in your Project1 there should be a default package
with the two files in it. Open both files.

• Right-click on BookTests.java and select Run as Java Application.

2

Lab 6 c©2006 Felleisen, Proulx, et. al.

• The program should run and produce output in the Console window
on the bottom. However, the window is very small. If you double-
click on any window tab in the Eclipse workspace, it will get resized
to cover the whole Eclipse pane. Double-clicking on its tab again re-
stores it back to the original view. Try it with the source files as well.

6.2 Learn to manage your files and save your work.

You noticed that instead of using one file to keep all of our work we now
have two different files. Java requires that each (public) class or interface is
saved in a separate file and the name of that file must be the same as the
name of the class or interface, with the extension .java. That means, you
will always need several files for each problem you are working on.

First, modify the files you were given by adding two more examples of
books to the BookTests class and showing the data in the main test driver.
Run your program.

Now save all your files as an archive. Go to the workspace subdirectory
of your eclipse directory and find the directory Project1. Make a .zip archive
of the files in the src subdirectory and save the archive in a folder where
you keep your work.

You can also create an archive of your project by highlighting the project,
then choose Export then select Zip archive. Eclipse will ask you for a folder
where to place the zip file and will let you choose the name for the zip file.

Your project will remain in the Eclipse workspace, but now you have
saved a copy that will not change as you keep working.

6.3 Learn the basics of the use of visibility modifiers in Java.

Add a class Author that contains the information about author’s name and
age and modify the class Book to refer to an object in the Author class. Of
course, you need to define a new file with the name Author.java.

Notice that all declarations in the project files start with the word pub-
lic. These keywords represent the visibility modifiers that inform the Java
compiler about the restrictions on what other programs may refer to the
particular classes, fields, or methods.

Declare the fields name and age in the class Author to be private. Now
design a method sameAuthor to the class Book that consumes a name of the
author and determines whether the book was written by an author with

3

c©2006 Felleisen, Proulx, et. al. Lab 6

the given name. Write your examples as comments for now. We will turn
them into tests in the next part.

You should fail in making this method work. Run it. You will see the
message Error in a required project. Continue launch?. At times the com-
piler is smart enough to fix small errors and hitting OK works just fine. In
this case, hit Cancel. The program launch stops and it looks like nothing
happened. Go to the tab Problems in the bottom pane and see what the
problems are. You should see the message The field author.name is not visible
(or something similar). The error was probably signalled in your code al-
ready. Clicking on the red cross mark to the left or the erroneous statement
pops up message indicating what is wrong, and even offers suggestions for
fixing the problem, whenever possible.

The problem is, that you no longer can see the field name in the class
Author. The class Author does not let you see how the author’s name is
represented in its class. For all we know, it could be a list of integers that
give you the position of each letter in the alphabet, so that an author with
the name Bach would have his name encoded as a list (2 1 3 7). However,
we can let the outside world find out whether this author’s name is the
same as the given String. Design a public method sameName to the class
Author that determines whether this author has the same name as the given
String.

Modify the previous method to use this helper method to solve the
problem.

6.4 Learn the basics of writing test cases in Java.

We are now on our own - with no help from ProfessorJ to show us nicely
the information represented by our objects, or to provide an environment
to run our test suite.

Viewing the data definitions

To make it possible to view the values of the fields for the objects we
define, we add to each class a method toString() that produces a String rep-
resentation of our data. Java allows us to use the + operator to concatenate
two Strings - it is much less messy than using the concat method we used
earlier.

The simplest way for defining the toString method for the class MyClass
is:

4

Lab 6 c©2006 Felleisen, Proulx, et. al.

public String toString(){
return "new MyClass(" + this.field1 + ", "

+ this.field2 + ")";
}

Our example for the class Book shows a more elaborate version that gives
us not only the value of each field, but also its name.

Java provides a toString() method for the class Object, but it typically
does not give us the information we are interested in, and so we override
the Java toString() method.

You must override the method toString() for every class you design,
even if, at times, it may show only a portion of the data represented by the
instance of the class.

Designing tests

Our goal when designing tests is to make sure that we can tell easily
not only that some tests failed, but also which test failed.

Read the code that tests the method before. It prints out a String that
consists of the names of the tests and the results of the tests. Convert your
examples for the tests for the methods sameAuthor and sameName into sim-
ilar tests and run your code again.

Save your results as a .zip file.

6.5 The World

Our projects that extended the World contained three import statements,
indicating that we need to use classes defined in three different libraries
written by someone else. Before we start a project that uses these libraries,
we need to make sure that the libraries are saved in a known location and
that the projects that need them will be able to find them.

Managing the Libraries

• First, create a folder EclipseJars in the same folder where you have
the Eclipse workspace. (This is our convention, not an Eclipse require-
ment.)

• Copy into this folder the three library files draw.jar, colors.jar, and ge-
ometry.jar.

5

c©2006 Felleisen, Proulx, et. al. Lab 6

• In the Project menu select Properties.

• In the left pane select Java Build Path

• In the top menu line select Libraries

• On the right select Add Variable A pane with title New Variable
Classpath Entry will open.

• Click on Configure Variables...

• Click on New to get the New Variable Entry pane

• Enter draw as Name and click on File... to select the draw.jar file in your
EclipseJars directory.

• Hit OK. A new entry should be visible under the Classpath Variables.

• Click again on Configure Variables... and follow the same steps to add
the file colors.jar to the Variables, and to add the file geometry.jar to the
Variables.

• Hit Cancel to get back to the main Eclipse environment.

From now on all your projects will be able to use these libraries.

Configuring a Project with the World Library

Start a new project BlobWorld. Import the .java files from the BlobWorld
folder. Notice that the files are marked with a number of errors. You need
the World library.

To work with the libraries you need to add the three Variables you de-
fined earlier to this project. The process is similar to what you did earlier:

• In the Project menu select Properties.

• In the left pane select java Build Path

• In the top menu line select Libraries

• On the right select Add Variable A pane with title New Variable
Classpath Entry will open.

• Click on draw entry in the list of available Variables and hit OK.

6

Lab 6 c©2006 Felleisen, Proulx, et. al.

• You are back in the pane where you started adding a variable, but
now, the entry for draw is available.

Repeat the last two steps for the colors and geometry Variables.

• When you are done, hit OK to get back to you project environment.

You can now run your BlobWorld project. The key controls the move-
ment of the ball, but the timer also moves the ball randomly on each tick.
The user interface is nearly the same as we have seen in ProfessorJ.

Make sure you can run the project and see how it is designed.

6.6 Quiz

6.7 Pong Game

Create a new project named PongGame and import all files from the PongGame
you designed in Lab 4. Add the libraries (variables) to the project and run
it. You may need to make small changes in your code:

• Rename the file Ball.java. All Java file names must have the same
name as the first class defined in the file.

• Add to the imports on the top the following: import java.awt.*;

so we can use Java colors.

• Add the public visibility modifier to the four methods declered in the
abstract class World that we override in the class PaddleWorld: draw,
erase, onKeyEvent, and onTick.

• Modify the draw methods in the classes Ball and Paddle so that the
argument they take is World w and the method body starts with return
w.theCanvas.draw(. . . .

• Modify the draw method body in the class PaddleWorld to be similar
to the draw method in the class Blob:

boolean draw(World w){
return w.theCanvas.drawRectangle(...);

}

7

c©2006 Felleisen, Proulx, et. al. Lab 6

i.e., supply this world as argument to the draw methods for the World
components and then draw the shapes on the instance of theCanvas in
the given World.

Finally, add the Examples class to the project, then right click on the
Examples class to run the program.

Spend the rest of the lab adding new features to the Pong game.

8

