
Lab5 c©2006 Felleisen, Proulx, et. al.

5 All are equal, but some are more equal than others.

Goals:

Learn how to determine the equality of two objects in a Java program.
The definitions of all the classes are already provided. The classes in-

clude a method translate in the class CartPt and the method move in the
remaining classes. Both methods consume the distance dx and dy by which
the items should be moved or translated. Additionally, some sample data is
also given. Your goal is to design the method same that determines whether
the values of two objects are the same (according to our definition of same-
ness).

5.1 Equality of simple classes

We start with our class of CartPt. The class is defined as follows:

+----------------------------------+
| CartPt |
+----------------------------------+
| int x |
| int y |
+----------------------------------+
| CartPt translate(int dx, int dy) |
+----------------------------------+

The method move is defined as follows:
// translate the position of this point by the given dx and dy
CartPt translate(int dx, int dy){

return new CartPt(this.x + dx, this.y + dy);
}

Our tests are designed as follows:

CartPt pt1 = new CartPt(20, 30);

boolean testMove = check pt1.move(−5, 8) expect new CartPt(15, 38);

Of course we know, that the check form compares the values of pt1 and
the new CartPt we specified as the expected result. To replace this test by
our own, we need a method in the class CartPt that determines whether
this point is the same as the given one.

// is this point the same as the given one?
boolean same(CartPt that){...}

Design this method.

1

c©2006 Felleisen, Proulx, et. al. Lab5

5.2 Equality of classes with containment

We now want to see if two stars in our Shooting Stars program are the same.
Here is the class diagram for the class Star:

+---------------------------+
| Star |
+---------------------------+
| CartPt loc |
| int lifespan |
+---------------------------+
| Star move(int dx, int dy) |
+---------------------------+

Design the method same that determines whether two stars are the same.

We consider two stars to be the same if they are at the same location and
have the same lifespan.

Rewrite the tests as follows (remember, as the star moves, it also de-
creases its lifespan):

CartPt pt1 = new CartPt(20, 40);
boolean testTranslate = pt.translate(3, −5).same(new CartPt(23, 35));

Star star = new Star(this.pt1, 9);
boolean testMove = star.move(3, −5).same(new Star(new CartPt(23, 35), 8);

5.3 Quiz

You have 10 minutes.

5.4 Equality of unions with self-reference

We will continue with the class Star and the classes that represent a list of
Stars.

5.4.1 Problem analysis

We need the method same to compare one instance of the list of Stars with
another instance. The argument must be of the type ALoStars, because it
can be an empty list as well as a nonempty list.

2

Lab5 c©2006 Felleisen, Proulx, et. al.

5.4.2 Purpose and Header

// determine whether this list of Stars is the same as the given one
abstract boolean same(ALoStars that);

This method needs to be defined in every subclass of the ALoStars class.

5.4.3 Examples

Empty list can appear both as the instance that invokes the method (this)
and as the argument to the method (that). Additionally, we need to think
what happens when two lists contain the same objects, but not in the same
order. It is much easier to compare two lists if the order of the items is the
same in both of them. We defer till later the work on sorting the lists, and
require here that the comparison succeeds only if the objects appear in the
same order in both lists.

Our examples then need to address all of these possibilities:

// Sample data
Star s1 = new Star(new CartPt(20, 40), 10);
Star s2 = new Star(new CartPt(30, 40), 5);
Star s3 = new Star(new CartPt(10, 30), 8);
Star s4 = new Star(new CartPt(10, 50), 10);

LoStars mtstars = new MTLoStars();
LoStars list1 = new ConsLoStars(s1, mtstars);
LoStars list2 = new ConsLoStars(s2, list1);
LoStars list3 = new ConsLoStars(s3, list2);
LoStars list4 = new ConsLoStars(s4, list3);

// dealing with the empty list
mtstars.same(new MTLoStars()) −−> true
mtstars.same(list1) −−> false
list1.same(mtstars) −−> false
list4.same(mtstars) −−> false

// dealing with a list with one item
list1.same(new ConsLoStars(s1, mtstars)) −−> true
list1.same(list2)) −−> false
list1.same(new ConsLoStars(s2,

new ConsLoStars(s3, mtstars))) −−> false

3

c©2006 Felleisen, Proulx, et. al. Lab5

// dealing with a list with more than one item
list4.same(new ConsLoStars(s1, mtstars)) −−> false
list4.same(new ConsLoStars(s4, new ConsLoStars(s3, list2)) −−> true
list4.same(new ConsLoStars(s4, new ConsLoStars(s2, mtstars)) −−> false

5.4.4 Template

Again, there is no data in MTLoStars, so we only need a template for the
class ConsLoStars:

. . . this.first . . .

. . . this.first.same(Star . . .) . . .

. . . this.rest . . .

. . . this.rest.same(ALoStars . . .) . . .

5.4.5 Body

As usual we try to do the simple case first.

class MTLoStars

In the class MTLoStars we have two pieces of data: this and that. We do
not know whether that is an instance of MTLoStars or of the ConsLoStars.

However, we do know that this is an instance of MTLoStars. We decide
to use this fact and design a helper method that consumes an argument of
the type MTLoStars and determines whether some list is the same as the
given empty list:

// determine whether this list is the same as given empty list
boolean sameMTLoStars(MTLoStars other)

and the body of our method becomes:

return that.sameMTLoStars(this);

What we see here is the reversal of the role of the two pieces of data
involved in the method: the argument of the unknown type invokes the
helper method, using the data of a known type (this) as the argument. But
that means, the method sameMTLoStars has to be implemented for all lists
- whether an empty or the constructed one. Let us finish the design of the
bodies (a trivial task) - leaving the examples to you (Make sure you do
them!):

in the class ALoStars:
// determine whether this list is the same as given MTLoStars list
abstract boolean MTLoStars(MTLoStars other);

4

Lab5 c©2006 Felleisen, Proulx, et. al.

in the class MTLoStars:
// determine whether this list is the same as given MTLoStars list
boolean sameMTLoStars(MTLoStars other){

return true;
}

in the class ConsLoStars:
// determine whether this list is the same as given MTLoStars list
abstract boolean sameMTLoStars(MTLoStars other){

return false;
}

class ConsLoStars

Here we run into the same problem. If the second list was an instance
of ConsLoStars, we could compare the first in each and the rest in each. But
that can also be an instance of MTLoStars.

We again wish for a helper method that gets as argument an instance of
ConsLoStars:

// determine whether this list is the same as given ConsLoStars list
boolean sameConsLoStars(ConsLoStars other)

and the body of the original method becomes:

return that.sameConsLoStars(this);

This method is invoked by the list that can be either an instance of MT-
LoStars or an instance of ConsLoStars, but we know its argument is an in-
stance of ConsLoStars. Again, we must define this method for both the MT-
LoStars and the ConsLoStars class.

Here is the variant in the MTLoStars class:

// determine whether this list is the same as given ConsLoStars list
boolean sameConsLoStars(ConsLoStars other){

return false;
}

All that remains is the body of the method in the ConsLoStars class. But
here both this and other are of the type ConsLoStars. The template gives us
the following:

. . . this.first other.first . . . −− Star

. . . this.rest other.rest . . . −− LoStars

5

c©2006 Felleisen, Proulx, et. al. Lab5

. . . this.first.same(Star −−−) . . . −− boolean

. . . this.rest.same(ALoStars −−−) . . . −− boolean

. . . other.first.same(Star −−−) . . . −− boolean

. . . other.rest.same(ALoStars −−−) . . . −− boolean

We see that we can compare the two first fields (both of the type Star):

this.first.same(other.first)

which invokes the method same in the class Star.
Reading the purpose statement for this.rest.same method invocation we

get:
determine whether the rest of this list is the same as given list
and all we have to do is to use the other.rest as its argument, to compare

the rests of the two lists:

this.rest.same(other.rest)

which invokes the method same in the class that is the runtime type of
this.rest.

The body of the method is then:

// determine whether this list is the same as given ConsLoStars list
boolean sameConsLoStars(ConsLoStars other){

return this.first.same(other.first) && this.rest.same(other.rest);
}

5.5 On your own ...

Here is another class hierarchy. Design the method same that determines
whether two packages are the same.

+---------+
| Package |<---------------+
+---------+ |
+---------+ |

| |
/ \

--------------------- |
| | |

+------------+ +---------------+ |
| Gold | | Wrap | |
+------------+ +---------------+ |
| int weight | | Package layer |----+
+------------+ +---------------+

6

Lab5 c©2006 Felleisen, Proulx, et. al.

Save all your work — the next lab may build on the work you have done

here!

7

