
Lab3 c©2006 Felleisen, Proulx, et. al.

3 Designing Methods — Part 2

We continue with the the theme of the photo images. Our goal is to design
methods that answer questions about list of images and manipulate these
lists.

We will also work with the geometric shapes and learn to draw their
images on the Canvas.

3.1 Methods for Self-Referential Data

In the previous lab you designed a list of photo images. We first design the
method that counts the images in our list. (We use the simpler version of
the class Photo that was defined in Lab 1.

Note: Of course, you will quickly realize that this method will look the
same regardless of what are the pieces of data contained in the list. We will
address that issue later on, once we are comfortable with dealing with lists
that contain specific items.

Below is an example of the design of a method that counts the number
of pictures in a list of photo image.

The method deals with ListOfPhotos. We have an interface ListOfPho-
tos and two classes that implement the interface, MTListOfPhotos and Con-
sListOfPhotos. When the DESIGN RECIPE calls for the method purpose state-
ment and the header, we include the purpose statement and the header in
the interface ListOfPhotos and in all the classes that implement the interface.

Including the method header in the interface serves as a contract that
requires that all classes that implement the interface define the method with
this header. As the result, the method can be invoked by any instance of a
class that implement the interface - without the need for us to distinguish
what is the defined type of the object.

We can now proceed with the DESIGN RECIPE.

• Step 1: Problem analysis and data definition.

The only piece of data needed to count the number of elements in a
list is the list itself. The result is an integer.

We will use the following data in our examples. For your work add
at least one more instance of each class.

1

c©2006 Felleisen, Proulx, et. al. Lab3

// Examples for the class Photo
Photo river = new Photo("River", "jpeg", 3456, 2304, 3614571);
Photo mountain = new Photo("Mountain", "jpeg", 2448, 3264, 1276114);
Photo people = new Photo("People", "gif", 545, 641, 13760);
Photo icon = new Photo("PLTicon", "bmp", 16, 16, 1334);

ListOfPhotos mtlist = new MTListOfPhotos();
ListOfPhotos list1 = new ConsListOfPhotos(this.river, this.mtlist);
ListOfPhotos list2 = new ConsListOfPhotos(this.mountain,

new ConsListOfPhotos(this.people,
new ConsListOfPhotos(this.icon, this.mtlist)));

• Step 2: The purpose statement and the header.

// to count the number of pictures in this list of photos
int count(){...}

In the interface ListOfPhotos we write:

// to count the number of pictures in this list of photos
int count();

indicating there is no definition for this method.

We now have to design the method separately for each of the two
classes.

• Step 3: Examples.

We make an examples for the empty list, a list with one element and
a longer list:

mtlist.count() −−−> 0
list1.count() −−−> 1
list2.count() −−−> 3

• Step 4: The template.

We need to look separately at the two classes that implement the
method.

class MTListOfPhotos: The class has no member data and there is no
other data available. It is clear that the method will always produce
the same result, the value 0.

2

Lab3 c©2006 Felleisen, Proulx, et. al.

We can finish the steps 4. and 5. right away — the method body
becomes:

// to count the number of pictures in this list of photos
int count() {

return 0;
}

The template for the class ConsListOfPhotos includes the two fields,
this.first and this.rest. However, just as in HtDP, we recognize that
this.rest is a data of the type ListOfPhotos and so it can invoke the
method count that is now under development. The template then
becomes:

class ConsListOfPhotos

int count(){
. . . this.first . . . −−− Photo
. . . this.rest . . . −−− ListOfPhotos

. . . this.rest.count() . . . −−− int

Recall the purpose statement for the method count:

// to count the number of pictures in this list of photos

That means the purpose of the method invocation this.rest.count() is

// to count the number of pictures in the rest of this list of photos

When designing methods for self-referential data, make sure you say
out loud (or at least understand clearly) the purpose statement as ap-
plied to the self-referential method invocation.

• Step 5: The method body.

We have already finished the method body for the class MTListOfPho-
tos. In the class ConsListOfPhotos the method body is:

// to count the number of pictures in this list of photos
int count(){

return 1 + this.rest.count();
}

3

c©2006 Felleisen, Proulx, et. al. Lab3

• Step 6: Tests.

We can now convert our examples into tests:

// Tests for the method count:
boolean testPixels = (check this.mtlist.count() expect 0) &&

(check this.list1.count() expect 1) &&
(check this.list2.count() expect 3);

Design the methods that will help you in dealing with your photo col-
lection:

1. Before burning a CD of your photos, you want to know what is the
total size in bytes of all photos in the list of photos.

2. You now want to go over the list of photos and select only the photos
in the jpeg format.

3. Finally, you want to sort the list of photos by the name of the image
(as typically these are generated by your camera and represent the
date and time when the photo was taken).

3.2 Quiz

You have 10 minutes.

3.3 Methods for Self-Referential Data — Part 2
Graphics and Key Events

In the previous lab you defined classes that represent different geometric
shapes - a circle, a square, and a shape that is a combination of two shapes,
the top and the bottom one. Recall the data definition as given by the class
diagram:

+-------+
| Shape |<--------------------------+
+-------+ |
+-------+ |

| |
/ \

--------------------------------------- |

4

Lab3 c©2006 Felleisen, Proulx, et. al.

| | | |
+-------------+ +-------------+ +--------------+ |
| Square | | Circle | | Combo | |
+-------------+ +-------------+ +--------------+ |

+-| Posn nw | +-| Posn center | | Shape top |----+
| | int size | | | int radius | | Shape bottom |----+
| | Color color | | | Color color | +--------------+
| +-------------+ | +-------------+
+----+ +-----------+

| |
v v

+-------+
| Posn |
+-------+
| int x |
| int y |
+-------+

1. Design the method that computes the total area of a shape. For the
shape that consists of two components add the areas - as if you were
measuring how much paint is needed to paint all the components.

You will need to use math functions, such as square root. The follow-
ing example show how you can use the math function, and how to
test doubles for equality. (You can only make sure they are different
only within some given tolerance.)

class Foo{
double x;

Foo(double x){
this.x = x;

}

double squareRoot(){
return Math.sqrt(this.x);

}
}

class Examples {
Examples () {}

Foo f = new Foo(16.0);

boolean testSquared =
check this.f.squareRoot() expect 4.0 within 0.01;

}

5

c©2006 Felleisen, Proulx, et. al. Lab3

2. Design the method that produces a new shape moved by the given
distance in the vertical and horizontal direction.

3. Design the method that determines whether the given point is within
this shape.

4. Of course, we would like to draw the shapes on a canvas. The follow-
ing code (that can be written within the Examples class shows how
you can draw one circle:

import draw.*;
import colors.*;
import geometry.*;

class Examples{
Examples() {}

Canvas c = new Canvas(200, 200);

boolean makeDrawing =
this.c.show() &&
this.c.drawDisk(new Posn(100, 150), 50, new Red());

}

The three import statements on the top indicate that we are using
the code programmed by someone else and available in the libraries
named draw, colors, and geometry. Open the Help Desk and look under
the Teachpacks for the teachpacks for How to Design Classes to find out
more about the drawing and the Canvas.

Save all your work — the next lab will build on the work you have done
here!

If you have some time left, work on the Etudes part of the homework.

6

