
Lab 11 c©2007 Felleisen, Proulx, et. al.

11 Working with HashMap: Overriding ’equals’

The goal of this lab is to learn to use the professional test harness JUnit. It is
completely separated from the application code. It is designed to report not
only the cases when the result of the test differs from the expected value,
but also to report any exceptions the program would throw. The slight
disadvantage is that it uses the Java equals method that by default only
checks for the instance identity. To use the JUnit for the method tests similar
to those we have done before we need to override the equals any time we
wish to complare two instances of a class in a manner different from the
strict instance identity.

However, each time we override the equals method we should make
sure that the hashCode method is changed in a compatible way.

We start with learning to use HashMap class. We then see how we can
override the needed hashCode method. Finally, we also override the equals
method to implement the equality comparison that best suits our problem.

The last part of the lab shows you how you can measure the algorithm
performance (timing) to see concretely the differences between the running
times of different algorithms that have been designed to perform the same
tasks.

Part 1: Using the HashMap

Our goal is to design a program that would show us on a map the locations
of the capitals of all 48 contiguous US states and show us how we can travel
from any capital to another.

This problem can be abstracted to finding a path in a network of nodes
connected with links — known in the combinatorial mathematics as a graph
traversal problem.

The Data

To provide real examples of data the provided code includes the (incom-
plete) definitions of the class City and the class State.

1. Download the code for Part 1 and build the project USmap.

2. Download the file of state capitals.

3. The project contains three implementations of the Traversal interface.
The InFileBufferedTraversal allows you to read any Stringable data into

1

c©2007 Felleisen, Proulx, et. al. Lab 11

an ArrayList. The OutFileTraversal saves the Stringable data stored in
an ArrayList into a file. The Interactions class contains the code that
shows you how to do this.

Run the code with some of the city data files.

4. The Examples class contains examples of the data for three New Eng-
land states (ME, CT, MA) and their capitals. Add the data for the
remaining three states: VT, NH, RI. Initialize the lists of neighboring
states for each of these states. Do not include the neighbors outside
of the New England region.

We now have all the data we need to proceed with learning about hash
codes, equals, and JUnit.

Using HashMap

The class USmap contains only one field and a constructor. The field is
defined as:

HashMap<City, State> states = new HashMap<City, State>();

The HashMap is designed to store the values of the type State, each cor-
responding to a unique key, an instance of a City — its capital.

Note: In reality this would not be a good choice to the keys for a HashMap —
we do it to illustrate the problems that may come up.

1. Go to Java documentation and read what is says about HashMap. The
two methods you will use the most are put and getKey.

2. Define the method initMap in the class Examples that will add to the
given HashMap the six New England states.

3. Test the effects by verifying the size of the HashMap and by checking
that it contains at least three of the items you have added. Consult
Javadocs to find the methods that allow you to inspect the contents
and the size of the HashMap.

Understanding HashMap

We will now experiment with HashMap to understand how changes in the
equals method and the hashCode method affect its behavior.

2

Lab 11 c©2007 Felleisen, Proulx, et. al.

1. Define a new City instance boston2 initialized with the same values as
the original boston. Now put the state MA again into the table, using
boston2 as the key. The size of the HashMap should now be 7.

2. Now define the equals method in the class City that behaves the same
way as our same method, except for checking first whether the given
object is of the type City.

Now run the same experiment as above. The resulting HashMap still
has size seven. Even though we think the two cities are equal, they
produce a different hash code.

3. Now hide the equals method (comment it out) and define a new hash-
Code method by producing an integer that is the sum of the hash
codes of all the fields in the City class.

Now run the same experiment as above. The resulting HashMap still
has size seven. Even though the two cities produce the same hash
code, the HashMap sees that they are not equal and does not confuse
the two values.

4. Now un-hide the equals method so that two City objects that we con-
sider to be the same produce the same hash code.

When you run the experiment again you will see that the size of the
HashMap remains the same after we inserted Massachusetts with the
boston2 key.

Note: Read in ”Effective Java” a detailed tutorial on overriding equals and
hashCode.

Part 2: Introducing JUnit

You will now rewrite all your tests using the JUnit. In the File menu select
New then JUnitTestCase. When the wizard comes up, select to include the
main method, the constructor, and the setup method. The tests for each of
the methods will then become one test case similar to this one:

/**
* Testing the method toString

*/
public void testToString(){

assertEquals("Hello: 1\n", this.hello1.toString());

3

c©2007 Felleisen, Proulx, et. al. Lab 11

assertEquals("Hello: 3\n", this.hello3.toString());
}

We see that assertEquals calls are basically the same as the test methods
for our test harnesses, they just don’t include the names of the tests. Try
to see what happens when some of the tests fail, when a test throws an
exception, and finally, make sure that at the end all tests succeed.

Ask for help, try things — make sure you can use JUnit, so you will not run
into problems when working on the assignment and the final project.

Warning

Try to get as much as possible during the lab. Ask questions when you
do not understand something. Everything that you do in this lab will be
used in the next assignment or in the final project.

Part 3: Timing and Big-Oh

Download the provided zip file and unzip it. Create a new Eclipse project
named Lab11-sorting. Add the given code to the project. You should have
the following Java files:

• class Examples defines and runs all the tests.

• class Algorithms implements the insertion sort and the quicksort.

• class IntComp implements the Comparator for integers.

• class Sorter is a wrapper that enables us to print the timing results
neatly.

• class Timing provides a simple way to interact with the system clock.

For this section of the lab we are going to quickly explore the differences
between O(nˆ2) and average O(n log n) sorting algorithms.

Insertion Sort:

As mentioned in class, the running time of insertion sort is approximately
O((n ∗ (n + 1))/4) = O(nˆ2). This is because in order to insert each element
into the sorted portion of the List we must compare k/2 items on average,
where k is the size of the sorted portion.

4

Lab 11 c©2007 Felleisen, Proulx, et. al.

In the Algorithms class from the zip for this section, you can see an im-
plementation of Insertion Sort which sorts an ArrayList<X> in-place.

Quick Sort:

This algorithm is considered one of the best in-place sorting algorithms
because it is easy to implement and runs pretty fast. Have a look at the
implementation in the Algorithms class.

Your Task

If you try to run the Examples class you will notice there is a RuntimeExcep-
tion that’s thrown. This is because there is a missing implementation. As
further practice with Comparators, you need to implement the IntComp class
which compares two Integers using available functions.

You must then add a new instance of your class to the Examples main
method (see where the null is?) so that the sorting tests will work.

Once you have implemented the class and created an instance, run the
Examples class to see what it produces. Check the output to see if it is
indeed sorted... if not you will need to fix your comparator!

When the sorts work correctly, run the Examples class again, but this
time modify the source to run 3 or 4 timed sort tests by changing the vari-
able loops appropriately. Note the loop which uses this variable.

Results

You should get some reasonable differences between the times of Insertion
and Quick Sort even on these smaller ArrayLists.

Before you take-off, look over the interesting portions of the supplied
code:

• static and Generic methods in the Algorithms class

• The fillData(. . .) method in the Examples class... try to understand
what’s going on there

• The abstract class Sorter and its implmentations that wrap calls to
the Algorithms code (remember function Objects?) and the methods
which use them in the Example class.

5

c©2007 Felleisen, Proulx, et. al. Lab 11

• And check out the Timing for a way to query the System for accurate
time counts and what we can do with them.

6

