
Lab 10 c©2007 Felleisen, Proulx, et. al.

10 Java API, Exceptions, and Collections

Activities

1. Familiarize yourself with the Java Application Programmers Inter-
face (API) documentation.

2. Learn the basics of writing comments in Javadoc style.

3. Learn the basics of working with the ArrayList and use the Scanner
class.

4. Define and use exceptions to detect and handle errors.

Warning

Try to get as much as possible during the lab. Ask questions when you
do not understand something. The first part of the next assignment is to
complete all tasks in this lab.

Resources

Download the provided zip file and unzip it. Create a new Eclipse project
named Lab11. Add the given code to the project and link the external JAR
jpt.jar to the project. You should have the following Java files:

• class Examples that is to be used for tests that are not a part of the
program that interacts with the user

• class Interactions that controls our user interactions - you will add a
couple of methods here

• class Reply - a skeleton, you have to add the functionality

• class SampleEliza the database of answers and some of the methods
dealing with the answers to the patient.

• class Words - a data for exploring ArrayList and String manipulations.

• class IllegalUseOfTraversalException to illustrate how exception classes
are defined.

• additional classes we have seen before: ISame interface, SimpleTestHar-
ness, Traversal, and TraversalALC.

1

c©2007 Felleisen, Proulx, et. al. Lab 10

• also use jpt.jar with the project.

10.1 Activity: Reading JavaDocs

Go to the Java API at http://java.sun.com/j2se/1.5.0/docs/api/. Bookmark this
page! When coding you will often use classes that are provided for you
by Java. The Java API describes these classes and lists all of the fields and
methods of these classes that are available to you.

The front page of the Java API lists all of the packages provided by Java.
A package is a collection of related interfaces and classes.

Tips For Quickly Finding Class Specifications

The left frame of the API page lists all classes alphabetically. If you want
the specifications for a specific class you can click in this frame and use
your web browsers search function to find that class. For example, find the
ArrayList class. Another way to quickly find Java API specifications is to
search Google for ”java api class x”, where x is the name of the class you’re
searching for. For example, the search ”java api class arraylist” returns the
specifications for class ArrayList as the first result.

The Anatomy of a JavaDoc

All of the specifications are in a JavaDoc format. JavaDocs are automati-
cally generated from source code based on specifically formated comments
that the programmer adds for each class and each method. We will look at
the format of such comments shortly.

Lets use the ArrayList JavaDoc as an example.
The top of the JavaDoc lists the other classes that ArrayList extends and

implements. In this case, ArrayList extends from the classes Object, Abstract-
Collection, AbstractList, and implements the interfaces Cloneable, Collection,
List, RandomAccess, Serializable.

Next is a general description of the class. In this case, the JavaDoc says
that ArrayList is a ”Resizable-array implementation of the List interface.”

Following this is a summary of fields, constructors, and methods pro-
vided by ArrayList. In general, classes will provide very few public fields
and the JavaDoc will contain mostly specifications of methods. Look over
some of the methods provided by ArrayList.

2

Lab 10 c©2007 Felleisen, Proulx, et. al.

The method summaries provide headers (return type, name, and argu-
ments) and a short description of the method’s functionality. More detailed
descriptions are linked from these summaries and appear farther down on
the same page.

Generating JavaDoc-s

For detailed description of how to write documentation for the automatic
Javadoc generator see http://java.sun.com/j2se/javadoc/writingdoccomments: How
to Write Doc Comments for the Javadoc.

Look first at the code for the class Traversal. Notice the special format of
the comments. Notice also that they are shown in a different color than the
comments we have seen so far.

When the comments for Java programs are written using this special
format, the documentation web pages can be generated automatically —
with all the cross-references necessary.

The comment always starts with /∗∗ and usually spans several lines.
Each line then starts with a ∗ and the last line has only ∗/ in it. When you
start typing such comment in Eclipse the color of the comment changes and
the ∗ at the beginning of the line is generated automatically. In addition the
beginnings of some of the special comment commands are also generated
for you.

To see how to write the comments while designing a program, start by
adding to the Examples class a stub of a method reverse1 with the header
below. (A stub is a method with a complete header and the body that only
produces the correct type of value, but does not perform the desired com-
putation. We use the stubs as place-holders when designing a program just
to make sure the program would compile. Later, we design the rest ofthe
method.)

public <T> ArrayList<T> reverse1(ArrayList<T> alist){
return alist;

}

then start the comment above. You will see that it generates the follow-
ing template for the comment:

/**
*
* @param <T>

* @param alist

* @return

*/

3

c©2007 Felleisen, Proulx, et. al. Lab 10

We complete the comment as follows:

/**
* Reverse the elements in the given <code>ArrayList</code>

* using a helper <code>ArrayList</code>

*
* @param <T> the datatype for the elements of <code>ArrayList</code>

* @param alist the original <code>ArrayList</code>

* @return <code>ArrayList</code> with elements in reverse order

*/

In Project menu select Generate Javadoc... and choose the doc folder
for the documentation. Choose to make the documentation pages only for
the class Examples.

When done, look at the pages in a browser. The index.html file will be in
the folder you have selected.

This is enough for a start — experiment with Javadoc-s for a whole
project at home. For the remainder of the semester, always write com-
ments so that we can generate complete documentation from the program
sources.

10.2 Activity: Working with the ArrayList

The class Words contains some Strings and ArrayLists of Strings that we
will use. Our first task is to reverse the order of the words in the ArrayList
reversed. Design a method in the Examples class that reverses the order of
the words in the ArrayList.

Do the following three tasks - modifying the previous solution as you
go on (or keeping the previous one and adding a new variant:

• First just produce another ArrayList with the words reversed. We
have already written the header for this method when learning how
to generate documentation. Use a while loop or a for loop with indices.
If you do not know how, aks for help immediately.

• Next think of how you would reverse the elements in an ArrayList
without using another ArrayList at all. Design the method that will
perform this task for an arbitrary ArrayList.

• Finally, design the method that will print all words, one to a line,
traversing the ArrayList using the for loop. for now there is no good
way to test this method, so just observe that it indeed prints all values.

4

Lab 10 c©2007 Felleisen, Proulx, et. al.

10.3 Activity: Learning about the Scanner class

The text in the ArrayList words in the class Words is encoded. It represents
verses from a poem - if you read only the first words.

Java allows you to parse Strings using the methods in the Scanner class.
Look up the Scanner class in JavaDocs. The methods there allow you to
traverse over a String and produce one word at a time. To determine what
characters should indicate the end of a word, the Scanner class methods use
regular expressions. You will learn about these later.

The following method finds the first word (sequence of only lower case
and capital letters) in a String, ignoring the leading white space:

/**
* find the first word of the given <code>String</code>

*
* @param s the input

* @return the first word of the input

*/
public String firstWord(String s){

Scanner firstWord =
new Scanner(s.trim()).useDelimiter("[ˆa-zA-Z]");

return (firstWord.next());
}

The method trim in the class String produces a String with the leading
and trailing whitespaces removed.

The new instance of the Scanner class is given this String to process. The
method useDelimiter tells the Scanner instance to use any characters other
than the letter of the alphabet as word separators.

Read the description of the method for the Scanner class and look up
the methods hasNext and next. They are similar to our traversal methods.
Use them to design the method makeWords that consumes one String and
produces an ArrayList of words.

Define this method within the Examples class and use it to read the poem
encoded in the first words of the Strings in the ArrayList words in the class
Words.

10.4 Activity: Eliza Game

Our goal is to train our computer to be a mock psychiatrist, carrying on a
conversation with a patient. The patient (the user) asks a series of ques-
tions. The computer-psychiatrist replies to each question as follows. If the
question starts with one of the following (key)words: Why, Who, How,

5

c©2007 Felleisen, Proulx, et. al. Lab 10

Where, When, and What, the computer selects one of the three (or more)
possible answers appropriate for that question. If the first word is none of
these words the computer replies ’I do not know’ or something like that.

1. Start by designing the class Reply that holds a keyword for a ques-
tion, and an ArrayList of answers to the question that starts with this
keyword.

2. Design the method randomAnswer for the class Reply that produces
one of the possible answers each time it is invoked. Make sure it
works fine even if you add new answers to your database later. Make
at least three answers to each question.

The method

MathUtilities.randomInt(low, high);

generates a random number in the range from low (inclusive) to high
exclusive.

3. Design the class Eliza that contains an ArrayList of Replys.

4. In the class Eliza design the helper method firstWord that consumes
a String and produces the first word in the String. We have already
seen a similar method earlier in this lab.

Make sure your program works if the user uses all uppercase letters,
all lower case letters, mixes them up, etc. (Again, let the Java docu-
mentation help you find the solution.)

5. In the class Eliza design the method answerQuestion that consumes the
question String and produces the (random) answer. If the first word
of the question does not match any of the replies, produce an answer
Don’t ask me that. — or something similar. If no first word exists,
i.e., the user either did not type any letters, or just had hit the Return,
throw an EndOfSessionException.

Of course, you need to define the EndOfSessionException class.

6. For practice, design a new class EndOfSessionException that extends
the Exception class. An example that shows how to design a class that
extends Exception see the code for IllegalUseOfTraversalException.

6

Lab 10 c©2007 Felleisen, Proulx, et. al.

7. In the Interactions class design the method playEliza that repeats ask-
ing questions and providing answers until it catches the EndOfSes-
sionException — at which time it ends the game.

8. You can now play the game, using the playEliza method in the Inter-
actions class.

7

