
Exercise Set 4 c©2006 Felleisen, Proulx, et. al.

4 Structural Recursion vs. Accumulators; Abstractions;
Libraries

Etudes

Problem 15.10 in the Etudes in Assignment 3 dealt with shopping lists.

1. Design the method that produces a shopping list sorted by the brand
names. The class String defines the following method:

// this String is lexicographically before that String: positive result
// this String is same as that String: result is 0
// this String is lexicographically after that String: negative result
int compareTo(String that);

2. Rewrite the methods howMany, brandList, and highestPrice using ac-
cumulator style.

4.1 Etude

Problem 4.5 asked you to design data definitions for files of images, text,
and sounds. Problem 14.4 asked you to add methods timeToDownload, small-
erThan, and sameName.

Design the appropriate abstract class that eliminates as much repetition
in the code as possible.

4.2 Etude

Problem 18.3.

4.3 Etude

In problem 14.5 you designed methods unitPrice, lowerUnitPrice, and cheap-
erThan for the classes that represent the inventory in a grocery store.

Design the appropriate abstract class that eliminates as much repetition
in the code as possible.

4.4 Etude

Problem 19.1.

1



c©2006 Felleisen, Proulx, et. al. Exercise Set4

Note:

If you feel that you really understand the concepts covered in these etudes,
you may do only two out of four. However, make sure you know how to
solve all of them.

Main Assignment — Part 1

4.5 Problem

One bad apple can spoil a bunch. In this problem we practice designing
methods for lists of data. The classes LoA, MtLoA, and ConsLoA represent
a list of apples, for each apple we record its weight, and whether it is good
or spoiled. Design these classes.

Now design the following methods that deal with lists of apples:

1. Method countGood that counts all the good apples in the list of apples.

2. Method onlyGood that produces a list of all good apples in the list of
apples.

3. Method biggest that finds the weight of the heaviest good apple in the
list of apples.

4. Method sort that produces a list of apples sorted by their weight.

Now rewrite the first three methods by using the accumulator style:

5. Design the method countGood2 that invokes countGoodAcc where
countGoodAcc uses an accumulator to remember known values.

6. Design the method onlyGood2 that invokes onlyGoodAcc where
onlyGoodAcc uses an accumulator to remember known values.

7. Design the method biggest2 that invokes biggestAcc where
biggestAcc uses an accumulator to remember known values.

2



Exercise Set 4 c©2006 Felleisen, Proulx, et. al.

Main Assignment — Part 2

We continue working with the classes that help us draw the city map and
its attractions that we did in Assignment 1, Problem 1.5 in Part 2.

4.6 Problem

1. Design the method distTo0 that computes the distance of the point of
interest to the origin. (Make the origin in the top left corner of the
map.)

2. Design the method distanceTo(InterestPoint ip) that computes the dis-
tance from this point to that one.

3. Design the method withinDistance that determines whether a point of
interest is within the given distance from a given Place.

The code contains an extensive amount of repetition.

4. Design the abstract class that allows you to eliminate as much repe-
tition as possible. Re-design the methods above within the new class
hierarchy. Rename the methods by adding V1 to their names (i.e. ver-
sion 1) and hand in both variants. Make sure you run the same tests
as you did in the original solution.

Main Assignment — Part 3: Rat Race

The goal of this exercise is to design an interactive game. The rat lives in
a cage and rambles around looking for something to eat. There are globs
of stuff around - some are food and some are poison. If the rat does not
eat for some time, he starves to death. If the rat finds a food glob, his
life expectancy increases as he eats the food. If he finds poison, he dies
instantly.

Rat’s life is simulated on a canvas. The rat moves in response to the key
events - as the user hits the arrow keys, the rat moves in the corresponding
direction. The world starts with a collection of globs of food and poison.
As the timer ticks away, the rat gets hungrier and closer to death, unless he
finds some food to eat.

3



c©2006 Felleisen, Proulx, et. al. Exercise Set4

4.7 Problem

Design the class(es) that represent the rat, and design the methods that
simulate the rat’s behavior:

1. Analyze the information needed to represent the rat. Make examples
(in English) of several instances of a rat. Then, design the class(es)
that represent the rat in this game. And we do not have to remind
you that ...

2. Design the method that consumes a String that represents a key event
and produces a rat that has moved in the direction specified by the
key event. Of course, that the rat only moves if one of the appropriate
keys was hit.

3. Design the method canEat that determines whether the rat is close
enough to the given location (where, presumably, some food or poi-
son lies).

4. Design the method eatFood that produces a rat that consumed the
given amount of food.

5. Design the method poison that produces a dead rat.

6. Design the method starve that produces a new rat, one hour hungrier
that this rat, possibly a dead rat.

7. Design the method draw that displays the rat on the given Canvas.

8. Design the class RatWorld that contains one rat. Design the methods
draw, erase, onKeyEvent that allow you to show the rat and control the
moves using the arrow keys. You will need to implement the skeleton
of the method onTick as well — you learned how to do it in the lab.

9. Now design the onTick method that just invokes the starve method in
the class(es) that represent a rat. Additionally, if the rat is dead, the
game ends by returning the result of the endOfWorld("The rat died.")
method invocation.

4



Exercise Set 4 c©2006 Felleisen, Proulx, et. al.

4.8 Problem

Design the classes that represents the globs of food or poison in the rat
cage. Then add methods that simulate the rat’s interaction with the globs
(finding a glob, eating it, etc.). Note, that the rat’s life expectancy increases
proportionately to the amount of food in each food glob. However, any
amount of poison is fatal to the rat.

1. Analyze the information needed to represent the globs. Make exam-
ples (in English) of several instances of a both kinds of globs. Then,
design the classes that represent the globs in this game.

2. Design the method(s) foundGlob that determine whether a given rat
has found this glob. (Remember the method canEat in the class(es)
for rats?)

3. Design the method feed that produces a new instance of the given rat
after he ate this glob. Remember the eatFood method to the class Rat?

4. Design the method newGlob that produces a new glob at random -
either poisonous of a food glob of a random weight (food amount), at
a random location within the given bounds.

5. Design the method draw that will display a glob in the given Canvas.
Make sure that the player can distinguish visually between the food
globs and poisonous globs. It would also be helpful, if the display
indicated the relative sizes of the globs.

6. Add two globs to the class RatWorld that contains one rat. Modify the
methods draw, erase to show the glob as well.

7. Now modify the method onTick so that if the rat is close to the glob,
he will eat it.

8. Complete the game design, so that the rat moves in response to the
key events (arrow keys), eats the food when close enough ot it, the
eaten food is replaced, and the game ends if the rat ate poison or
starved to death.

5



c©2006 Felleisen, Proulx, et. al. Exercise Set4

4.9 Problem: Optional - Extra Credit

Design the class(es) that represent a list of globs and complete the game
design.

1. Design the classes that represent a list of globs in this game.

2. Design the method draw that displays this list of globs in the given
Canvas

3. Design the method feedRat that produces a new rat that consumed the
first glob in this list that was close enough to the rat.

4. Design the method removeEaten that replaces the first glob in this list
that was close enough to the rat, (so that the rat ate it), with a new
randomly chosen glob randomly placed it in the field.

5. Modify the RatWorld so that instead of one glob, it contains a list of
them. Modify the onTick method so that the rat now has a choice of
globs among all globs in a list of globs.

6


