
Exercise Set 11 c©2006 Felleisen, Proulx, et. al.

11 Assignment

Preamble

Goals

The first part of this assignment consists of a small program that uses
interfaces and classes either from Java’s standard libraries, or from our ear-
lier labs and assignments. The goal is to give you a bit of design freedom:
You get to decide which parts of the standard libraries, or which classes and
interfaces we already designed are the most suitable to use. If you design
well, this assignment should be fairly straightforward.

The goal of the second part is to give you a practice in designing reusable
library-style classes using the Java program design standards for design,
documentation and also for testing. The program you produce will even-
tually use the JUnit test tools and will include documentation in the style
that allows you to produce Javadoc documentation for your program.

Hints

Some or all of the following interfaces and classes are likely to prove
useful. In the java.lang package: Comparable, Iterator, List, Map, Set, Collec-
tions.

11.1 William Shakespeare

The Application

Have you ever wondered about the size of Shakespeare’s vocabulary?
For this assignment you will write a program that reads its input from a text
file and lists the words that occur most frequently, together with a count of
how many different words occur in the file. If this program were to run
on a file that contains all of Shakespeare’s works, it would tell you the ap-
proximate size of his vocabulary, and how often he uses the most common
words.

Hamlet, for example, contains about 4542 distinct words, and the word
”king” occurs 202 times.

1



c©2005 Felleisen, Proulx, et. al. Exercise Set11

The Problem
Start by downloading the file HW11.zip and making an Eclipse project

HW11 that contains these files. Add jpt.jar as a Variable to your project. Run
the project, to make sure you have all pieces in place. The main method is
in the class Examples.

You are given the file test.txt that contains the entire text of Hamlet and
a file Week11.java that contains the code that generates the words from the
file test.txt one at a time, via an iterator.

Note: Here you will use the imperative Iterator interface that is a part of Java
Standard Library. Make sure to look up the documentation for this interface and
understand how it works.

The classes Tester and Examples contain a test harness similar to the Sim-
pleTestHarness used in the previous two assignments, but improved to catch
exceptions raised while running the tests. More about this later...

Your tasks are the following:

1. Design the class Word to represent one word of Shakespeare’s vocab-
ulary, together with its frequency counter. The constructor takes only
one String (for example the word ”king”) and starts the counter at
one. We consider one Word instance to be equal to another, if they
represent the same word, regardless of the value of the frequency
counter. That means that you have to override the method equals()
as well as the method hashCode().

2. Design the class that implements the Comparator interface, so that the
words can be sorted by frequencies. (Be careful!) When you are done,
place this class definition as the last part of the class definition of the
class Word. This is called an inner class.

3. Include in the class Word the method that allows you to increment the
counter (using mutation), and a method toString that prints one line
with the word and its frequency.

4. Design the class WordCounter that keeps track of all the words we
have seen so far. It should include the following methods:

// records the Word objects generated by the given Iterator.
void countWords (Iterator it) { . . . }

2



Exercise Set 11 c©2006 Felleisen, Proulx, et. al.

// How many different Words has this WordCounter recorded?
int words() { . . . }

// Prints the n most common words and their frequencies.
void printWords (int n) { . . . }

Here are additional details:

5. countWords consumes an iterator that generates the words and builds
the collection of the appropriate Word instances, with the correct fre-
quencies.

6. words produces the total count of different words that have been con-
sumed.

7. printWords consumes an integer n and prints the top n words with the
highest frequencies (using the toString method defined in the class
Word).

11.2 Test Design and Management

Of course, you need to test all methods as you are designing them. Design
the tests in two stages:

1. When designing the classes Word and WordCounter, use the new vari-
ant of the test harness. The class Tester contains the following driver
for the tests:

3



c©2005 Felleisen, Proulx, et. al. Exercise Set11

// run the tests, accept the class to be tested as a visitor
void runTests(Testable f ) {

this.n = 0;
try {

f.tests(this);
}
catch (Throwable e) { // catch all exceptions

this.errors = this.errors + 1;
console.out.println("Threw exception during test " + this.n);
console.out.println(e);

}
finally {

done();
}

}

// to be run after all tests have been performed
public void done(){

if (this.errors > 0)
console.out.print("Failed " + this.errors + " out of ");

else
console.out.print("Passed all ");
console.out.println (this.n + " tests.");

}

The class Examples implements the Testable interface that contains just
one method:

void tests(Tester t);

Inside of this method the class Examples invokes the appropriate test
methods on the instance t of the Tester.

So we have a chicken and egg problem here. The class Tester wants to
know what is the Examples instance that is running the tests, so that
it can invoke the method tests(Tester t) defined in the Examples class
inside of the Tester’s try clause.

The class Examples in turn needs an instance of the class Tester so that
it can invoke each test method inside of the method tests(Tester t).

4



Exercise Set 11 c©2006 Felleisen, Proulx, et. al.

The main gain is that every invocation of the methods test is wrapped
inside of the try clause and if an exception is thrown, the error report
indicates which one of the tests failed.

The only thing you need to do is to include all your tests and the
needed sample data inside of the tests(Tester t) method in the class
Examples.

This prepares us for the third way of running tests, namely using
JUnit - Java’s standard test framework.

2. Introducing JUnit: To get the first taste of using JUnit, convert the tests
for this problem to tests that use JUnit. Then use JUnit for tests in the
Part 3 of this assignment.

Rewrite all tests for the part 3 of this assignment using the JUnit.
In the File menu select New then JUnitTestCase. When the wizard
comes up, select to include the main method, the constructor, and the
setup method. The tests for each of the methods will then become one
test case similar to this one:

/∗∗
∗ Testing the method toString
∗/

public void testToString(){
assertEquals("Hello: 1\n", this.hello1.toString());
assertEquals("Hello: 3\n", this.hello3.toString());

}

We see that assertEquals is basically the same as the test methods for
our test harnesses, they just don’t include the name of the test. Try to
see what happens when some of the tests fail, when a test throws an
exception, and finally, make sure that at the end all tests succeed.

5


