
Exercise Set 10 c©2007 Felleisen, Proulx, et. al.

10 Sorting, Stacks, Queues, and more...

Etude: Lab 10 — Words

For the etude finish the lab parts 10.2 and 10.3.

Part 1: Eliza

In the lab you started working on the Eliza program that allows the com-
puter to interact with the user by providing replies to a series of questions.
As part 1 of this assignment, finish the program. Include in your portfolio
a sample transcript of the user-computer interaction.

Part 2: Selection Sort

The main goal is to practice working with loops by designing a well-known
sorting algorithm. You will need data and Comparators for your tests.

1. To test the algoritms you design here use the City classes we defined
in Assignment 8. Define three different Comparators: by name, by zip
code, and by latitude.

In the Algorithms class design a static method SelectionSort that con-
sumes an ArrayList<T> and an instance of a class that implements
Comparator<T> and mutates the ArrayList<T> so that it is sorted in the
order given by the Comparator<T>.

It is possible to combine all parts into one method, but you must use
the following helper methods:

3. swap that swaps in the given ArrayList<T> the elements at the two
given locations.

4. findMinLoc finds in the given ArrayList<T> the location of the mini-
mum element among all elements at the location greater than or equal
to the given location. Of course, it also consumes the Comparator<T>.

5. selectionSort method that is described at the beginning.

1



c©2007 Felleisen, Proulx, et. al. Exercise Set 10

Variants

5. You can choose to use any of the loops we have seen (including the
Traversal<T>, and its implementation for ArrayList<T>. However,
as the second part of the problem you must convert your solutions for
minLoc and selectionSort to use either while loop without the Traversal<T>

or for loop without the Traversal<T>.

If you already used one of these, convert the code to using the other
loop. Rename your methods as minLocV1 and selectionSortV1.

Part 3: Stacks, Queues, and Priority Queues

In our final project we will need to keep track of accumulated values —
places we should visit next when searching for a path from one place to
another on a map. However, the way how we add/remove items from this
accumulator will depend on our choice of search strategy. Therefore, we
start with a common interface, and design three different implementations
of this interface.

The Accumulator interface is defined as follows:

/∗∗
∗ <P>An interface that represents a container for accumulated collection of
∗ data elements. The implementation specifies the desired add and remove
∗ behavior.</P>

∗ <P>The expected implementations are Stack, Queue, and Priority Queue.</P>

∗/
public interface Accumulator<T>{

/∗∗
∗ Does this <CODE>{@link Accumulator}</CODE> contain any data elements?
∗ @return true is there are no elements in this
∗ <CODE>{@link Accumulator}</CODE>.
∗/

public boolean isEmpty();

/∗∗
∗ Change the state of this <CODE>{@link Accumulator}</CODE> by adding
∗ the given element to this <CODE>{@link Accumulator}</CODE>.
∗ @param t the given element
∗/

public void add(T t);

2



Exercise Set 10 c©2007 Felleisen, Proulx, et. al.

/∗∗
∗ Change the state of this <CODE>{@link Accumulator}</CODE> by removing
∗ the given element to this <CODE>{@link Accumulator}</CODE>.
∗ Produce the removed element.
∗ @return the removed element
∗/

public T remove();
}

1. Design the class MyStack<T> that implements the Accumulator<T>

interface by always removing the most recently added element.

2. Design the class MyQueue<T> that that implements the Accumulator<T>

interface by always removing the least recently added element.

3. Design the class MyPriorityQueue<T> that contains an instance of
a Comparator<T> and implements the Accumulator<T> interface by
always removing the element that has the highest priority as deter-
mined by its Comparator<T>.

4. Design the classes IllegalStackOperation IllegalQueueOperation and Ille-
galPriorityQueueOperation that extend the class Exception in the java.lang
package. Modify the methods that implement the Stack, Queue, and
the PriorityQueue so that they throw the appropriate exceptions.

Explore the Java documentation and in online tutorials to see how to
throw and catch an Exception that is not a subclass of the RuntimeEx-
ception.

Note: You can decide on your own what will be the class of data that will
provide the elements to use in testing these classes.

Part 4: Extra Credit: Animations

Design an animated representation of a queue and a stack as follows:
The world consists of a queue and a stack of points. The queue is shown

as a set of lines from the first point to the next, till the end. The stack is not
seen. On tick, one point is removed from the stack and added to the queue.
The effect is an animated display of a route from the beginning to the end.

The Documentation: a concise summary

You may have noticed that the style in which we write documentation for
this assignment has changed. When written in the well formatted javadoc

3



c©2007 Felleisen, Proulx, et. al. Exercise Set 10

style, the comments can used to generate web pages of documentation with
cross-references and browsing capabilities. There are a few basic rules, the
rest you should learn on your own, gradually, as you become more and
more skilled Java programmers.

Here are comments to specify the name of the file, and the class defini-
tion:

/∗
∗ @(#)Word.java 17 November 2006
∗
∗/

/∗∗
∗
∗ <P><CODE>Word</CODE> represents one word and its
∗ number of occurrences counted in the
∗ <CODE>{@link WordCounter WordCounter}</CODE> class.</P>

∗
∗ @see Comparable
∗
∗ @author Viera K. Proulx
∗/

public class Word implements Comparable {

The @author and @see identify the author and provide a cross-reference
to other classes as specified.

Each field in the class has its own comment:
/∗∗
∗ the frequency counter
∗/

public int counter;

Each method has a comment that includes a separate line for each pa-
rameter as well as for the return value:

/∗∗
∗ Compare two <CODE>Object</CODE>s for equality
∗
∗ @param obj the object to compare to
∗ @return true if the two objects have the same contents
∗/

public boolean equals(Object obj){

4



Exercise Set 10 c©2007 Felleisen, Proulx, et. al.

The @param has to be followed by the identifier used for that param-
eter. The <CODE> and < /CODE> tags specify the formatting for the
document to be the teletype font for representing the code.

Eclipse helps you to write the documentation. If you start the comment
line with /∗∗ and hit the return, the beginnings of remaining comment lines
are generated automatically, and you only need to add the relevant infor-
mation.

When you have finished all the documentation, select the item Gener-
ate Javadoc... in the Project menu. To see your web pages, just open the tab
doc in the Package Explorer window under your project and double click
on the index.html.

5


