
CSU213 Exam 1 – Spring 2007

Name:

Student Id (last 4 digits):

Homework login name:

Instructor’s Name + Time:

• Write down the answers in the space pro-
vided.
• You may use all forms that you know from
ProfessorJ (Beginner), or ProfessorJ (Inter-
mediate. where indicated. If you need a
method and you don’t know whether it is pro-
vided, define it.
• Remember that the phrase “develop a
class” or “develop a method” means more
than just providing a definition. It means to
design them according to the design recipe.
You are not required to provide a method
template unless the problem specifically asks
for one. However, be prepared to struggle if
you choose to skip the template step.
• We will not answer any questions during
the exam.

Good luck.

Problem Points /

1 /20

2 /10

3 /15

4 /15

Total /60

20 Points

Problem 1

A bad apple spoils the whole bunch. We want to do something about bad
apples in the bushel of apples. To do so, for each apple we keep track of
whether it is good or bad, and how much does it weigh (in whole ounces).
The bushel is represented as a list of apples.

The following is the data definition for a bushel of apples:

// to represent an apple

class Apple {

boolean good;

int weight;

Apple(boolean good, int weight) {

this.good = good;

this.weight = weight; }

}

// to represent a bushel of apples

interface LoA {

}

// to represent an empty bushel of apples

class MtLoA implements LoA {

MtLoA() { }

}

// to represent a nonempty bushel of apples

class ConsLoA implements LoA {

Apple first;

LoA rest;

ConsLoA(Apple first, LoA rest) {

this.first = first;

this.rest = rest; }

}

2

A. Make at least three examples of bushels of apples.

Solution [POINTS 3: must include empty
list, lists of one item (good and bad), lists with multiple items, includ-
ing all good and all bad. Note: These examples are used in subsequent
tests. A point lost here may indicate insufficuent number of test cases
for one of the subsequent problems.]

Apple good1 = new Apple(true, 8);

Apple good2 = new Apple(true, 5);

Apple bad1 = new Apple(false, 4);

Apple bad2 = new Apple(false, 6);

LoA mtbush = new MtLoA();

LoA bushOK = new ConsLoA(this.good1, this.mtbush);

LoA bushBad = new ConsLoA(this.good1, this.mtbush);

LoA bushOK2 = new ConsLoA(this.good1,

new ConsLoA(this.good2, this.mtbush));

LoA bushBad2 = new ConsLoA(this.bad1,

new ConsLoA(this.bad2, this.mtbush));

LoA bushMix = new ConsLoA(this.good1,

new ConsLoA(this.bad1,

new ConsLoA(this.good2,

new ConsLoA(this.bad2, this.mtbush))));

3

B. Show the purpose, header, and a complete template for the method
goodApples that produces a list of all good apples in a bushel of apples.

Solution [POINTS 3: 1 for purpose
and header, 1 for examples, 1 for the body]

// in the interface LoA:

// -- no template is possible - method has no body

// are there any bad apples in this bushel?

boolean anyBad();

// in the class MtLoA:

// -- no template is possible - the class has no fields

// are there any bad apples in this bushel?

boolean anyBad(){ ... }

// in the class ConsLoA:

// are there any bad apples in this bushel?

boolean anyBad(){

... this.first ... -- Apple

... this.first.good ... -- boolean

... this.first.weight ... -- int

... this.rest ... -- LoA

... this.rest.anyBad() ... -- boolean

}

4

C. Complete the design of the method goodApples that produces a list
of all good apples in a bushel.

Solution [POINTS 4: 1 for purpose,
header, and the body in the empty case, 1 point for the body for the
cons case, 2 points for examples: no points taken off here if both empty
and nonempty cases are covered – see part A.]

// in the interface LoA:

// produce a list of all good apples in this bushel

LoA goodApples();

// in the class MtLoA:

// produce a list of all good apples in this bushel

LoA goodApples(){ return this; }

// in the class ConsLoA:

// produce a list of all good apples in this bushel

LoA goodApples(){

if (this.first.good)

return new ConsLoA(this.first, this.rest.goodApples());

else

return this.rest.goodApples(); }

// int the class Examples:

// test the method goodApples

boolean testGoodApples(){

return

(check this.mtbush.goodApples() expect this.mtbush) &&

(check this.bushOK.goodApples() expect this.bushOK) &&

(check this.bushBad.goodApples() expect this.mtbush) &&

(check this.bushBad2.goodApples() expect this.mtbush) &&

(check this.bushOK2.goodApples() expect this.bushOK2) &&

(check this.bushMix.goodApples() expect this.bushOK2); }

5

D. Design the method sortApples that produces a list of all apples in a
bushel sorted by their weight. Do this problem last, even if you

know exactly what to do.

Solution [POINTS 9: 1 for purpose
and header for both sort and insert in the interface; 1 point for method
bodies for both methods in the empty class; 1 point for the bosy
of the sort method in the cons class; 2 points for the body of the
insert method in the cons class; 2 points for examples/tests of the sort
method; 2 points for examples/tests of the insert method – both sets of
tests (must include empty, singleton, larger list, to cover both variants
of the insert method)]

// in the interface LoA:

// produce a list of all apples in this bushel sorted by weight

// from this list of apples

LoA sortApples();

// insert the given apple into this sorted list of apples

LoA insert(Apple a);

// in the class MtLoA:

// produce a list of all apples in this bushel sorted by weight

// from this list of apples

LoA sortApples(){ return this; }

// insert the given apple into this sorted list of apples

LoA insert(Apple a){ return new ConsLoA(a, this); }

// in the class ConsLoA:

// produce a list of all apples in this bushel sorted by weight

// from this list of apples

LoApp sortApples(){

return this.rest.sortApples().insert(this.first); }

// insert the given apple into this sorted list of apples

LoA insert(Apple a){

6

if (a.weight < this.first.weight)

return new ConsLoA(a, this);

else

return new ConsLoA(this.first, this.rest.insert(a)); }

// in the class Examples:

// test the method sortApples

boolean testSortApples(){

return

(check this.mtbush.sortApples() expect this.mtbush) &&

(check this.bushOK.sortApples() expect this.bushOK) &&

(check this.bushBad.sortApples() expect this.bushBad) &&

(check this.bushOK2.sortApples() expect

new ConsLoA(this.good2,

new ConsLoA(this.good1, this.mtbush))) &&

(check this.bushMix.sortApples() expect

new ConsLoA(this.bad1,

new ConsLoA(this.good2,

new ConsLoA(this.bad2,

new ConsLoA(this.good1, this.mtbush)))));

}

// test the method insert

boolean testInsert(){

return

(check this.mtbush.insert(this.good1) expect this.bushOK) &&

(check this.bushOK.insert(this.good2) expect

new ConsLoA(this.good2,

new ConsLoA(this.good1, this.mtbush))) &&

(check

new ConsLoA(this.good2,

new ConsLoA(this.good1, this.mtbush)).insert(this.bad1)

expect

new ConsLoA(this.bad1,

new ConsLoA(this.good2,

new ConsLoA(this.good1, this.mtbush)))) &&

(check

new ConsLoA(this.good2,

new ConsLoA(this.good1, this.mtbush)).insert(this.bad2)

expect

7

new ConsLoA(this.good2,

new ConsLoA(this.bad2,

new ConsLoA(this.good1, this.mtbush)))); }

8

10 Points

Problem 2

The system keeps track of all the files in the system and all the directories
that contain both the files and also other directories. Your task is to design
a data definition that would allow the system programmer to keep track of
all this information.

Here are some details you need to know:

• For each file you record the file name and its size

• For each directory you record the directory name and the name of the
owner and the directory contents

• The directory contents can be one of the following: it may be empty,
it may contain a file followed by the remaining contents, or it may
contain a directory, followed by the remaining contents

9

A. Design the data representation for this information in the form of a
class diagram. You do not need to include a purpose statement for
each class or interface.

Solution [POINTS 5: 1 for the Direc-
tory class, 1 point for the Contents interface, 1 point for the three
variants of the Contents, 1 point for the File class, 1 point for correct
arrows]

+-------------------+

| Directory |<--+

+-------------------+ |

| String name | |

| String owner | |

| Contents contents |--------+ |

+-------------------+ | |

v |

+----------+ |

| Contents |<--------------------------+ |

+----------+ | |

+----------+ | |

| | |

/ \ | |

--- | |

| | |

--- | |

| | | | |

+------------+ +---------------+ +-----------------+ | |

| MtContents | | FFContents | | DFContents | | |

+------------+ +---------------+ +-----------------+ | |

+------------+ +-| File first | | Directory first |------+

| | Contents rest |-+ | Contents rest |-+ |

| +---------------+ | +-----------------+ | |

| | | |

v +----------------------+--+

+-------------+

| File |

+-------------+

| String name |

| int size |

+-------------+

10

B. Write down data examples, at least one for each class:

Solution [POINTS 5: 1 point for ex-
amples for the File class, 1 point for examples for the empty contents
and contents with a file as the first element, 1 point for examples for
the Directory class that consists of files only, 1 point for examples for
the contents with a directory as the first element,1 point for examples
for the Directory class that includes other directories.]

File file1 = new File("file1", 10);

File file2 = new File("file2", 20);

File file3 = new File("file3", 30);

Contents mtlist = new MtContents();

Contents f1list = new FFContents(this.file1, this.mtlist);

Contents f1f2list = new FFContents(this.file1,

new FFContents(this.file2, this.mtlist));

Directory mtdir = new Directory("MT", "Paul", this.mtlist);

Directory dirF1list =

new Directory("F1-list", "Paul", this.f1list);

Directory dirF1F2list =

new Directory("F1F2-list", "Paul", this.f1f2list);

Contents biglist1 = new DFContents(this.dirF1list, this.mtlist);

Contents biglist2 =

new DFContents(this.dirF1F2list,

new FFContents(this.file2, this.mtlist));

Directory bigdir1 = new Directory("big1", "Tim", this.biglist1);

Directory bigdir2 = new Directory("big2", "Tim", this.biglist2);

11

15 Points

Problem 3

An artist is designing mobiles. The following pictures show examples of
some mobiles:

mobile1 mobile2 mobile3

| | |

| | ------+------------

5 ----+-- | |

| | 10 -----+-----

4 4 | |

mobile4 | 5

| 5

|

-----+-----

| |

8 --+----

| |

4 4

The artist is not very happy with some of them - they do not look
balanced. Your job is to design a program that will help the artist design
balanced mobiles.

12

A. The class diagram represents all the information we need to know
about mobiles. Study it carefully and write down the actual class and
interface definitions in ProfessorJ beginner language.

+--------+

| Mobile |<-----------------+

+--------+ |

+--------+ |

| |

/ \ |

--- |

| |

---------------------- |

| | |

+--------------+ +----------------+ |

| Simple | | Big | |

+--------------+ +----------------+ |

| int cord | | int cord | |

| int weight | | int leftStrut | |

+--------------+ | Mobile left |----+

| int rightStrut | |

| Mobile right |----+

+----------------+

Solution [POINTS 5: 1 for purpose
statements for the interface and the two classes, 1 point for the inter-
face definition, 1 point for the Simple class definition, 2 points for the
Big class definition.]

// to represent a mobile

interface Mobile { }

// to represent a simple mobile

class Simple implements Mobile {

int cord;

int weight;

Simple(int cord, int weight) {

this.cord = cord;

this.weight = weight; }

}

// to represent a nontrivial mobile

class Big implements Mobile {

int cord;

13

int leftStrut;

Mobile left;

int rightStrut;

Mobile right;

Big(int cord, int leftStrut, Mobile left,

int rightStrut, Mobile right) {

this.cord = cord;

this.leftStrut = leftStrut;

this.left = left;

this.rightStrut = rightStrut;

this.right = right; }

}

14

B. Design examples of data that represent mobiles. Include among the
examples data that represents the mobiles shown in the introduction
to this problem. The lengths of the cords and struts should be in
proportion to the given ones.

Solution [POINTS 5: 1 for each of the
four shown mobiles, 1 point for an extra example.]

// Examples from the exam:

Mobile mobile1 = new Simple(2, 5);

Mobile mobile2 = new Big(2,

4, new Simple(1, 4),

4, new Simple(1, 4));

Mobile mobile3 =

new Big(1,

5, new Simple(1, 10),

10, new Big(1,

5, new Simple(2, 5),

5, new Simple(1, 5)));

Mobile mobile4 =

new Big(1,

5, new Simple(1, 8),

5, new Big(1,

2, new Simple(1, 4),

4, new Simple(1, 4)));

Mobile s5 = new Simple(10, 5);

Mobile s10 = new Simple(8, 10);

Mobile s15 = new Simple(20, 15);

Mobile bs5s10 = new Big(10, 8, this.s5, 4, this.s10);

Mobile bs15bs5s10 = new Big(5, 6, this.s15, 6, this.bs5s10);

Mobile bad1 = new Big(10, 5, this.s5, 5, this.s10);

Mobile bad2 = new Big(5, 6, this.s15, 6, this.bad1);

Mobile bad3 = new Big(5, 6, this.bad1, 6, this.s15);

Mobile bad4 = new Big(5, 3, this.s15, 6, this.bs5s10);

Mobile s5 = new Simple(10, 5);

Mobile s10 = new Simple(8, 10);

15

Mobile s15 = new Simple(20, 15);

Mobile bs5s10 = new Big(10, 8, this.s5, 4, this.s10);

Mobile bs15bs5s10 = new Big(5, 6, this.s15, 6, this.bs5s10);

Mobile bad1 = new Big(10, 5, this.s5, 5, this.s10);

Mobile bad2 = new Big(5, 6, this.s15, 6, this.bad1);

Mobile bad3 = new Big(5, 6, this.bad1, 6, this.s15);

Mobile bad4 = new Big(5, 3, this.s15, 6, this.bs5s10);

16

C. Design the method totalWeight that computes the total weight of the
mobile. Assume that the struts and the cords do not weigh anything.

Solution [POINTS 5: 1 for purpose
and header in the interface Mobile, 1 for the body in the Simple class,
1 for the body in the Big class, 2 for examples (must cover both Simple
and Big classes, examples for Big must include one with at least two
levels).]

// in the interface Mobile:

// compute the total weight of a mobile

int totalWeight();

// in the class Simple:

// compute the total weight of a mobile

int totalWeight(){

return this.weight; }

// in the class Big:

// compute the total weight of a mobile

int totalWeight(){

return this.left.totalWeight() + this.right.totalWeight(); }

// in the class Examples:

// test for the method totalWeight

boolean testTotalWeight(){

return (check this.s5.totalWeight() expect 5) &&

(check this.s15.totalWeight() expect 15) &&

(check this.bs5s10.totalWeight() expect 15) &&

(check this.bs15bs5s10.totalWeight() expect 30);

}

17

15 Points

Problem 4

The following classes have been designed to represent some kind of direction:

// to represent a direction

interface Direction { }

// to represent the direction to stop

class Stop implements Direction {

Stop() { }

}

// to represent the direction to go to the left

class Left implements Direction {

Direction go;

Left(Direction go) {

this.go = go; }

}

// to represent the direction to go to the right

class Right implements Direction {

Direction go;

Right(Direction go) {

this.go = go; }

}

18

A. Draw a class diagram for the classes that represent the direction.

Solution [POINTS 3: 1 for the Direc-
tion interface, 1 for the three variants, 1 point for the arrows.]

+-----------+

| Direction |<---------------------+

+-----------+ |

+-----------+ |

| |

/ \ |

--- |

| |

------------------------------------- |

| | | |

+------+ +--------------+ +--------------+ |

| Stop | | Left | | Right | |

+------+ +--------------+ +--------------+ |

+------+ | Direction go |-+ | Direction go |-+ |

+--------------+ | +--------------+ | |

| | |

+-------------------+--+

19

B. Make examples of data that represent the direction.

Solution [POINTS 4: 1 point for an
example of Stop, 1 point for examples of Left and Right where ’go’ is
a Stop, 2 points for more complex examples]

Direction stop = new Stop();

Direction left = new Left(this.stop);

Direction right = new Right(this.stop);

Direction lr = new Left(this.right);

Direction rl = new Right(this.left);

Direction lrl = new Left(this.rl);

Direction llrr = new Left(new Left(new Right(new Right(new Stop()))));

20

C. Design the method countLeft that counts Lefts in a direction.

Solution [POINTS 8: 1 point for pur-
pose and header in the Direction interface, 1 point each for the body
of the method in the classes Stop, Left, and Right, 4 points for exam-
ples (must include Stop, simple Left and Right, direction with several
Left-s and Right-s]

// in the interface Direction:

// count the number of lefts in this direction

int countLeft();

// in the class Stop:

// count the number of lefts in this direction

int countLeft(){ return 0; }

// in the class Left:

// count the number of lefts in this direction

int countLeft(){ return this.go.countLeft(); }

// in the class Right:

// count the number of lefts in this direction

int countLeft(){ return 1 + this.go.countLeft(); }

// in the class Examples:

// tests for the method countLeft

boolean testCountLeft(){

return (check this.stop.countLeft() expect 0) &&

(check this.left.countLeft() expect 1) &&

(check this.right.countLeft() expect 0) &&

(check this.lr.countLeft() expect 1) &&

(check this.rl.countLeft() expect 1) &&

(check this.lrl.countLeft() expect 2) &&

(check this.llrr.countLeft() expect 2); }

21

