CSU213 Exam 1 — Fall 2006

Name:

Student Id (last 4 digits):

Homework login name:

Instructor’s Name + Time:

e Write down the answers in the space pro-
vided.

¢ You may use all forms that you know from
ProfessorJ (Beginner), or ProfessorJ (Inter-
mediate. where indicated. If you need a
method and you don’t know whether it is pro-
vided, define it.

e Remember that the phrase “develop a
class” or “develop a method” means more
than just providing a definition. It means to
design them according to the design recipe.
You are not required to provide a method
template unless the problem specifically asks
for one. However, be prepared to struggle if
you choose to skip the template step.

e We will not answer any questions during
the exam.

Good luck.

Problem | Points |/
1 /13
2 /16
3 710
4 /11
5 710
Total /60

Problem 1

Take a look at these structure and data definitions:

// to represent an e-mail message
interface Message {

¥

// to represent an email message
class Email implements Message {
String header;
String body;

Email (String header, String body) {
this.header = header;
this.body = body;
}
X

// to represent a forwarded email message
class Forward implements Message {

String header;

Message message;

Forward(String header, Message message) {
this.header = header;
this.message = message;

}

Answer the following questions in this context:

A. Write down three distinct data examples, at least one per variant:

variant]

Message
Message

Message
Message
Message

Solution
msgl = new
msg2 = new
msg3 = new
msg4 = new
msgb = new

[POINTS 2: one point per

Email ("vkp", "hello");
Email ("mf", "bye");

Forward("bob", this.msgl);
Forward("dan", this.msg3);
Forward("ann", this.msg2);

B. Write down the template for each class in the Message hierarchy:
Solution

[POINTS 3:1 for the template in Email, 1 for the template in Forward,
1 for method invocation with self-reference]

class Email implements Message {
String header;
String body;
Email (String header, String body) {
this.header = header;
this.body = body;

b
777 method (){
. this.header ... -- String
. this.body ... -- String
... this.mmm() ... -— 77
}
b

class Forward implements Message {
String header;
Message message;
Forward(String header, Message message) {
this.header = header;
this.message = message;

b
77?7 method () {
. this.header ... -- String
. this.message ... -- Message
. this.mmm() ... -- 77
. this.message.mm() -- 77

C. Write down a purpose statement and the header for the method msglLength
that finds out how long is a message.

Solution _ [POINTS 1]

interface Message {

// determine the length of this message
int msglength();

}

D. Write down two method examples (one per variant) for this method.
Solution _ [POINTS 1]

// test the method msglength

boolean testMsgLength =
(check this.msgl.msglength() expect 8) &&
(check this.msg2.msglength() expect 5) &&
(check this.msg3.msglength() expect 11) &&
(check this.msg4.msglength() expect 14) &&
(check this.msgb.msglength() expect 8);

E. Complete the design of the method msgLength.
Solution _ [POINTS 1]

interface Message {
// determine the length of this message
int msglengthQ);

// is this message longer than that given message?
boolean longerMessage(Message that);
}

class Email implements Message{

// is this message longer than that given message?
boolean longerMessage(Message that){

return this.msglength() > that.msglength();

}
}

/] ...

Message
Message

Message
Message

// test

boolean
(check
(check
(check
(check
(check
(check
(check

msg3
msgé
Message msgb
Message msg6

msgl = new
msg2

new

new

new

new

new

the method
testLongerMessage =

.longerMessage (this.msg2) expect
this.msg2.
this.msgl.
this.msg2.
this.msg6.
.longerMessage (this.msg6) expect
this.msg4.

this.msgl

this.msg3

same in the class Forward

Email ("vkp", "hello");
Email ("mf", "bye");

Forward("bob", this.msgl);
Forward("dan", this.msg3);
Forward("ann", this.msg2);
Email ("heisenberg", "good day");

longerMessage

longerMessage(this.msgl) expect
longerMessage (this.msg3) expect
longerMessage(this.msg4) expect

longerMessage (this.msg4) expect

longerMessage(this.msgl) expect

true) &&
false) &&
false) &&
false) &&
true) &&
false) &&
true) ;

F. Design the method sender that produces the header of the original

email message.

Solution

[POINTS 3: 1 for purpose

and header, 1 for examples, 1 for the body]

interface Message {
// determine the length of this message

int msglengthQ);

// is this message longer than that given message?
boolean longerMessage (Message that);

// to produce the sender of this message

String sender();

class Email implements Message{

// to produce the sender of this message
String sender(){
return this.header;

}
}

class Forward implements Message {

// to produce the sender of this message
String sender(){
return this.message.sender();

}

// Eaxmples:
Message msgl
Message msg2

Message msg3
Message msgé

new
new

= new

new

Email ("vkp", "hello");
Email ("mf", "bye");

Forward("bob", this.msgl);
Forward("dan", this.msg3);

Message msgb
Message msg6

new Forward("ann", this.msg2);
new Email("heisenberg", "good day");

// test the method sender

boolean testSender =
(check this.msgl.sender() expect "vkp") &&
(check this.msg2.sender() expect "mf") &&
(check this.msg3.sender() expect "vkp") &&
(check this.msg4.sender() expect "vkp") &&
(check this.msgb.sender() expect "mf");

Problem 2

The main purpose of this exercise is to develop the method totalWeight of
an item in the manufacturer’s database.

The factory manufacturing keeps track of the parts needed to produce
different items. An item may be composed of several parts or of already
assembled composite items. For example, a car wheel consists of the rim
and the tire, (and other parts...), and we need four wheels to build a car.
We also need two doors, each consisting of a frame, a glass pane, and a lock.

Here are the relevant class definitions:

+

| MTLoItems

+ — +
— +

ConsLoIltems |
|
int number |

|

-| Item first
|
|

LoItems rest

Part Composite

String name
int weight

String name

LoItems items |---—-+

+ -+ — +

+ —— + — 4+
+ — — + — 4+

+—— + — 4

Note, that when constructing the list of items needed to build one com-
posite item, if there are three identical items needed, we can just include
the needed item once and specify that we need three of them, instead of
repeating the same item three times in the list.

A. Represent the example of a car that was given in the introduction to
this problem as data in this database.

Solution — [POINTS 3: 1 for the four
parts, 1 for the wheel and the door, 1 for the auto, 1 if the number
field is used to represent the multiplicity]

Item tire = new Part("Tire", 40);
Item rim = new Part("Rim", 20);

Item wheel = new Composite("wheel", new ConsLoltems(this.tire, 1,
new ConsLoItems(this.rim, 1,
new MTLoItems())));

Item glass = new Part("glass", 10);

Item frame = new Part("frame", 20);

Item lock = new Part("lock", 5);

Item door = new Composite("door", new ConsLoItems(this.glass, 1,
new ConsLoIltems(this.frame, 1,
new ConsLoItems(this.lock, 1,
new MTLoItems()))));

Item auto = new Composite("auto", new ConsLoItems(this.door, 2,

new ConsLoIltems(this.wheel, 4,
new MTLoItems())));

10

B. Show the template for each of the classes in this data definition.

Solution

[POINTS 4: 2 for ConsLoltems

— inlcuding method for ’first’ and self-reference, 2 for Composite]

// in the class ConsLoItems:

/* TEMPLATE
. this.
. this.
. this.
. this.
. this.

*/..

first
first.methodName ()
number ...

rest
rest.methodName ()

// in the class Item:

/* TEMPLATE
. this.
. this.

*/

name
weight

// in the class Composite:
/* TEMPLATE

. this.
. this.
. this.

*/

name
items
items.methodName ()

11

-- Item

-— returnType
-— int

-- Loltems

-- returnType

-- String
-- int

-- String
-- Loltems
-- returnType

C. Design the method totalWeight that computes the total weight of an
item in the manufacturer’s database.

Solution_ [POINTS 9: 4 for the 4 bodies
of the methods, 4 for examples for 4 methods, 1 points for method
declarations in the 1 interfaces

// interface Loltems:
// produce the total weight of this list of items
int totalWeight();

// class MTLoltems implements LoIltems:
// produce the total weight of this list of items
int totalWeight(){ return 0; }

// class ConsLoltems implements Loltems:
// produce the total weight of this list of items
int totalWeight O{
return this.first.totalWeight() * this.number +
this.rest.totalWeight();

// interface Item:
// produce the total weight of this item
int totalWeight();

// class Part implements Item:
// produce the total weight of this item
int totalWeight(){ return this.weight; }

// class Composite implements Item:
// produce the total weight of this item
int totalWeight(){
return this.items.totalWeight();
}

// class Examples:
Item tire = new Part("Tire", 40);
Item rim = new Part("Rim", 20);

12

Item wheel = new Composite("wheel", new ConsLoltems(this.tire, 1,
new ConsLoItems(this.rim, 1,
new MTLoItems())));

LoItems wheellist = new ConsLoltems(this.tire, 1,
new ConsLoIltems(this.rim, 1,
new MTLoItems()));

Item glass = new Part("glass", 10);
Item frame = new Part("frame", 20);
Item lock = new Part("lock", 5);

Item door = new Composite("door", new ConsLoIltems(this.glass, 1,
new ConsLoItems(this.frame, 1
new ConsLoIltems(this.lock, 1,
new MTLoItems()))));

b

LoItems doorlist = new ConsLoItems(this.glass, 1,
new ConsLoIltems(this.frame, 1,
new ConsLolItems(this.lock, 1,
new MTLoItems())));

Item auto = new Composite("auto", new ConsLoItems(this.door, 2,
new ConsLoItems(this.wheel, 4,
new MTLoItems())));

// test the method totalWeight in the class Part
boolean testTotalWeightPart =
(check this.tire.totalWeight() expect 40) &&
(check this.lock.totalWeight() expect 5);

// test the method totalWeight in the class Loltems
boolean testTotalWeightLoItems =
(check (new MTLoItems()).totalWeight() expect 0) &&
(check this.wheellist.totalWeight() expect 60) &&
(check this.doorlist.totalWeight() expect 35);

// test the method totalWeight in the class Composite
boolean testTotalWeightComposite =

13

(check this.auto.totalWeight() expect 310);

14

Problem 3

This and the next problem deal with magic colors. There are only three
magic colors: red, green, and blue. The magic is in the way that the colors
mix. Adding any color to itself produces the same color. Adding any color
other than red to red produces green, adding any color other than green to
green produces blue, and adding any color other than blue to blue produces
red.

We decided to represent the colors as follows:

// represent a magic color
class MagicColor{
String col;
MagicColor(String col) {
this.col = col;
}
}

A. Design the method addColor that implements the adding of the colors
as explained above.

Solution

;; [POINTS 3,]
// produce the magic color you get by adding the given color to this one
MagicColor addColor (MagicColor that){

}

15

B. We do not like the repetition in the methods. We think that repre-
senting the magic colors by derived subclasses with an abstract super
class would work better.

Our new class hierarchy begins to look as follows:

+
+

AMagicColors

+ — + — +

| String col

| ... addColor (AMC that) |

|
/\

"

" "
+ +

| MagicRed | | MagicGreen | | MagicBlue |

+
i
1
!
1
1
1
1
|
+
+
+
+
+

Convert your solution to work with this data representation as follows:

(a) Design the constructors - both in the super class and in the
subclasses.

16

(b) Convert your examples of data from the Part A to data in this
new representation.

Solution

;3 [POINTS 3,]
// produce the magic color you get by adding the given color to this one
MagicColor addColor (MagicColor that){

}

(c) Design the method addColor. Avoid as much repetition as pos-
sible. Follow the Design Recipe.

Solution

;; [POINTS 3,]
// produce the magic color you get by adding the given color to this one
MagicColor addColor(MagicColor that){

}

17

Problem 4

We now want to keep mixing magic colors and explore what colors we get as
the result. For this we designed a magic color arithmetic that allows us to
express different color combinations. The following class diagram represents

our color combinations arithmetic:

| Var

ColorExp

" "
+ +

col | String x

|
| MagicColors

In the class Var we can substitute any color for the variable represented
by the String s. If no substitutions are given, we assume that the default
value is to be used in determining the final color of the color mixing expres-

sion.

| MagicColors def

+——+ — +

ColorMix firstCol
ColorMix secondCol

+
|
|
|
|
|
|
|
|
|
|
|

+

+

4
+
4

+

18

A. Design the method eval that determines the final color after the col-
ors have been mixed in the manner corresponding to the color mix.
Use the def (default color) in the class Var. Solution

/*
[POINTS 2]
Here comes my solution

*/

19

B. Design the method subst that consumes a String s and an instance
of MagicColors col and replaces each variable expression Var that
contains the given string by a constant expression Const with the
value given by the MagicColors col.

Do not inlcude the field definitions and the constructors, but make it
clear in which class each method is defined. Solution

[POINTS 2: data examples]

20

Problem 5

On a road trip across the country we record at each stop the current odome-
ter reading and the number of galons of gas we purchased. We are iterested in
our miles-per-gallon consumption, and also what was our best ’gas mileage’.
The following classes represent a record of our trip:

// to represent one stop on a road trip
class Stop {

double mile;

double gallons;

Stop(double mile, double gallons) {
this.mile = mile;
this.gallons = gallons;
}
}

// to represent a car trip
interface Trip {

}

// to represent the start of a trip
class Start implements Trip {
Stop stop;

Start(Stop stop) {
this.stop = stop;
}
}

// to represent an actual car trip
class ConsTrip implements Trip {
Stop first;
Trip rest;

ConsTrip(Stop first, Trip rest) {
this.first = first;
this.rest = rest;

}

21

A. Design the method mpg that computes the number of miles we traveled
per gallon of gas on the part of the trip from one stop to another.

Solution

[POINTS: 10: 4 helper method, 3 examples, 3 main method |

// to represent a trip of one or more segments
interface Trip {
smaller(s2); // should be si

}

22

B. Design the method bestMPG that computes the best (highest) mpg over
the whole trip.

Solution

[POINTS: 10: 4 helper method, 3 examples, 3 main method |

// to represent a trip of one or more segments
interface Trip {
smaller(s2); // should be si

}

23

