Lecture 21 (©2006 Felleisen, Proulx, et. al.

21 Abstracting Traversals

Introduction

We know by now that the same data may be represented in several differ-
ent ways. We can save the information in a list, or in a binary search tree
(BST), or maybe, there are other ways of keeping track of data. However, in
each case we need to be able to perform the same basic operations. We can
insert an item to a binary search tree, or add an item to a list, determine the
number of elements in a tree or in a list, find the first item, or the structure
that represents the rest of the items.

Another relevant observation is that over the time as we kept design-
ing new methods for manipulating lists of data our classes kept growing
and changing constantly. We had a choice of either carrying with us all the
methods we already designed, or having several different variants of the
same structures of data, each with methods relevant to our current prob-
lem.

Both of these problems suggest that we seek an abstraction. The first
one suggests that the structure of the data and our way of interacting with
this structure can be abstracted, so that we can interact in a uniform way
with several different structures.

Abstracting over the structure of data

Suppose we defined an interface that allowed us to add items to a col-
lection of data and to determine the number of elements in this collection.
The interface would be:

// an interface to represent the construction of a data set
interface DataSet{

// add the given object to this data set
DataSet add(Object obyj);

// determine the number of elements in this data set
int size();

}

It would be easy to modify our list structures and the binary tree struc-
ture to implement this interface. For the lists, we do the following:

(©2006 Felleisen, Proulx, et. al. Lecture 21

// in the class ALoObyj:

// add the given object to this data set
DataSet add(Object obj){
return new ConsLoObj(obj, this);

}

// determine the number of elements in this data set
abstract int size();

// in the class MTLoObj:
int size(){
return O;

}

// in the class ConsLoObj:
int size(){
return 1 + this.rest.size();

}

though we may think of a better way of dealing with the size. For the
BST the add method would be the same as the original insert and again, the
size is the same as the count of nodes we designed earlier. However, now
we can build either of these structures using the same methods in the same
way.

We will see more of these kinds of abstractions when we discuss the
Java Collections Framework.

Abstracting over the traversals

The second problem is a bit harder. Each method that processed a list of
data engaged every element of the list in some computation, one element
at a time. We may have been just counting them, of selecting those that
satisfied some predicate, or producing a new value from the data contained
in the original data element (map).

The typical structure of the program was:

// in the class ALoObj:
abstract Object method(...);

Lecture 21 (©2006 Felleisen, Proulx, et. al.

// in the class MTLoObj:
Object method(...){
return baseValue;

}

// in the class ConsLoObj:
Object method(. . .){
return result using
... (this first) ...
... this.rest.method(...)...);

}
We looked at two specific methods:

// determine the number of elements in this data structure
int size();

// does this list contain the given object?
boolean contains(Object obyj);

The method bodies in the two classes, MTLoObj and ConsLoObj were:

// in the class MTLoObj:
int size() {
return O;

}

boolean contains(Object obj){ return false;

}

// in the class ConsLoObj:
int size(){
return 1 + this.rest.size();

}

boolean contains(Object obj){
return ((ISame)this.first).same(obj) ||
this.rest.contains(obyj);
}

Not all parts were present for all problems, but it is clear that we needed
tobe able to process the first item and to have access to the rest. Let us recall
similar methods in Scheme. The general structure of a function defined for
a list-like data was:

(©2006 Felleisen, Proulx, et. al. Lecture 21

(define (fcn alist)
(cond
[(empty? alist) ... produce base-value ...]
[(cons? alist) ... produce result using
... (firstalist) ...
... (fen (restalist)) ... 1))

We would like to be able to design a method in our Examples class that
consumes a list structure and produces a result that is computed by exam-
ining each element of that list. We need to design a mechanism that will
allow us to access the data in the list in the desired orderly fashion.

We start by defining the desired interface that allows us to observe the
contents of a list-like structure:

// functional iterator for a linear traversal of a data structure
interface Traversal{

// is there a current element available in the structure
boolean hasMore();

// produce the current element of the structure
Object current();

// produce an iterator for the rest of this structure
Traversal advance();

}

We now need to implement these methods in the classes that represent a
list of objects. the method hasMore produces false for the empty list and pro-
duces true for the nonempty list. The methods current and advance cannot
produce any sensible result for the empty list and should signal an error.
The current element in a nonempty list is the value off the first field. The list
we get by advancing beyond the first element is the rest. So, the complete
implementation of the Traversal interface is as follows:

interface ILoObject extends Traversal{

// is there a current element available in the structure
boolean hasMore();

// produce the current element of the structure
Object current();

Lecture 21 (©2006 Felleisen, Proulx, et. al.

// produce an iterator for the rest of this structure
Traversal advance();

}

class MTLoObject implements ILoObject{
MTLoObject() {

}

// is there a current element available in the structure
boolean hasMore(){
return false;

}

// produce the current element of the structure
Object current(){
throw new NoSuchElementException(
" Cannot produce current element in an empty list");
}

// produce an iterator for the rest of this structure
Traversal advance(){
throw new NoSuchElementException(
" Cannot advance in an empty list");
1

}

class ConsLoObject implements ILoObject{
Object first;
ILoObject rest;

ConsLoObject(Object first, ILoObject rest){
this.first = first;
this.rest = rest;

}

// is there a current element available in the structure
boolean hasMore(){
return true;

}

(©2006 Felleisen, Proulx, et. al. Lecture 21

// produce the current element of the structure
Object current(){

return this.first;
}

// produce an iterator for the rest of this structure
Traversal advance(){
return this.rest;

}
}

We can now design the two methods, size and contains. Recall their
earlier definitions:
interface ILoObject{
// to compute the size of this list
int size();

// is the given book in this list?
boolean contains (Object that);

}

class MTLoObject implements ILoObject{
MTLoObject() {}

int size(){
return O;

}

boolean contains (Object that){
return false;

}
}

class ConsLoObject implements ILoObject{
Object first;
ILoObject rest;

ConsLoObject(Object first, ILoObject rest){
this.first = first;
this.rest = rest;

}

Lecture 21 (©2006 Felleisen, Proulx, et. al.

int size(){
return 1 + this.rest.size();

}

boolean contains (Object that){
return ((ISame)this.first).same(that)
|| this.rest.contains(that);
}

}

The translation of these methods into external methods

int size(Traversal t);

boolean contains(Object obj, Traversal t);

defined in the Examples class or some other client class is straightfor-
ward. We first write down the template for the method that consumes the
Traversal iterator. Note that the value of this is irrelevant here — the in-
stance of the Examples class is not being used by the method.

R AN
... LhasMore() ...
. if ((t.hasMore())
... t.ecurrent() ...
. t.advance() . ..
.. size(t.advance()0 ...
.. contains(Object, t.advance()) . ..

The complete implementation of these methods then becomes:

// compute the size of the data set given by the traversal
int size(Traversal t){
if (t.hasMore())
return 1 +
size(t.advance());
else
return O;

(©2006 Felleisen, Proulx, et. al. Lecture 21

// does the data set given by the traversal contain the given object?
boolean contains(Object obj, Traversal t){
if (t.hasMore())
return ((ISame)t.current()).same(obyj) ||
contains(obj, t.advance());
else
return false;
}

We just have to convert earlier examples into tests using the new meth-
ods. The original examples for the lists of books were:

class Examples{
Examples () {

}

Book b1 = new Book(" DVC" , 2003);
Book b2 = new Book(" LPP", 1942);
Book b3 = new Book(" HtDP" , 2001);

ILoObject mtbooks =
new MTLoObject();
ILoObject booklist =
new ConsLoObject(b1,
new ConsLoObject(b2,
mtbooks));

boolean testSizeBookl =
mtbooks.size() == 0;

boolean testSizeBook2 =
booklist.size() == 2;

boolean testContainsBookl =
this.mtbooks.contains(this.bl) ==
false;
boolean testContainsBook2 =
this.booklist.contains(this.b2) ==
true;
boolean testContainsBook3 =
this.booklist.contains(b3) ==
false;

Lecture 21 (©2006 Felleisen, Proulx, et. al.

The new tests — after the methods size and contains are defined in the
Examples class are:

boolean testSizeBookT1 =
this.size(this.mtbooks) == 0;

boolean testSizeBookT2 =
this.size(this.booklist) == 2;

boolean testContainsT1 =
this.contains(this.bl, this.mtbooks) ==
false;
boolean testContainsT2 =
this.contains(this.b2, this.booklist) ==
true;
boolean testContainsT3 =
this.contains(b3, this.booklist) ==
false;

