Lecture 16 (©2006 Felleisen, Proulx, et. al.

16 Lecture: Looking the Same

Goals: - Abstracting over Data Types.

Introduction

Over the past several weeks we have defined a number of lists: lists of
books, persons, recordings, blocks, and more - repeating the same code
again and again. The Design Recipe for Abstraction will guide us in learning
to remove the repetitions code. In the process, we need to learn a couple of
new language features that support such abstractions.

Examples of Code Duplication

Let us compare the code for defining a list of books and a list of authors:

R + R +
| I'LoBoOk |<------------ + | TLOAUthOr | <----cemmmmmnnn +
Femmeaaaa + | e + |
I\ | I\ |
| | | |
---------- | C e |
| | | | I |
[+ R e + e, + L + |
| MrLoBook | | ConsLoBook | | | MTLoAut hor | | ConsLoAuthor | |
Fommmmea e + B + S + e + |
F + +-| Book first | ommmmmaae + +-| Author first |
| | ILoBook rest |--+ | | ILoAuthor rest |--+
| H-meemee e + | e +
| |
v v
L R + R +
| Book | | Aut hor |
R I + R +
| String title | | String name |
| int year | | int year |
R I + R +

We also include the code for two methods we have seen several times:
size() that counts the number of elements in the list, and contains(Book/Author]
that) that determines whether the list contains the given book or the given
author, respectively.

The class diagrams are nearly identical. So is the code. The only differ-
ence is the reference to the class of data that the elements of the list repre-
sent, either Book or Author. In Java, every class implicitly extends the super
class of all classes, class Object. If we replace all occurrences of Book or Au-
thor by Object — except for the definitions of the two classes, we get the
follwing class diagram:

The type of the field first in the class ConsLoObject is Object. That means,
that it can be an instance of any of the classes that extend Object. Obviously,
instances of Book or Author are among them. We can test our examples of

(©2006 Felleisen, Proulx, et. al.

Lecture 16

interface | LoBook{
/1 to conpute the size of this list
int size();

/1 is the given book in this list?
bool ean contains (Book that);
}

cl ass MrLoBook i npl enments | LoBook{
MrLoBook() {}

int size(){ return 0; }

bool ean contai ns (Book that){
return fal se;
}

}

cl ass ConsLoBook i npl enents | LoBook{
Book first;
I LoBook rest;

ConsLoBook(Book first,
| LoBook rest){
this.first = first;
this.rest = rest;

}
| TEMPLATE:
..this.first.. - Book
..this.rest.. - | LoBook
..this.rest.size().. - int
..this.rest.contains(Book).. - bool ean
*/

int size(){

return 1 + this.rest.size();
}

bool ean contains (Book that){
return this.first.sanme(that)
|| this.rest.contains(that);

}

2:I ass Exanpl es{
Exanples () {}

Book bl = new Book("DVC', 2003);
Book b2 = new Book("LPP', 1942);
Book b3 = new Book("Ht DP", 2001);

| LoBook ntbooks =
new MrLoBook();
| LoBook booklist =
new ConsLoBook(b1l,
new ConsLoBook(b2,
nt books)) ;

bool ean testSizel =
nt books. si ze()

bool ean testSize2 =
booklist.size() == 2;

bool ean test Containsl =
t his. nmt books. contains(this.bl)
== fal se;
bool ean test Contains2 =
t his. booklist.contains(this.b2)
== true;
bool ean test Contains3 =
this. booklist.contains(b3)
== fal se;

interface | LoAuthor{
Il to conpute the size of this list
int size();

/1 is the given author in this list?
bool ean contains (Author that);

}

cl ass MILoAut hor inplenents |LoAut hor{
MrLoAut hor () {}

int size(){ return 0; }

bool ean contains (Author that){
return fal se;
}

}

cl ass ConsLoAut hor inpl enments | LoAut hor{
Aut hor first;
| LoAut hor rest;

ConsLoAut hor (Aut hor first,
| LoAut hor rest){
this. first = first;
this.rest = rest;

}
|+ TEMPLATE:
..this.first.. - Aut hor
..this.rest.. - | LoAut hor
..this.rest.size().. - int
..this.rest.contains(Author).. - bool ean
*/

int size(){
return 1 + this.rest.size();
}

bool ean contains (Author that){
return this.first.same(that)
|| this.rest.contains(that);

}

}cl ass Exanpl es{
Examples () {}

Aut hor al = new Aut hor ("DB", 1956);
Aut hor a2 = new Aut hor (" St Ex", 1900);
Aut hor a3 = new Aut hor ("M, 1972);

| LoAut hor ntauthors =
new MTLoAut hor () ;
I LoAut hor authorlist =
new ConsLoAut hor (al,
new ConsLoAut hor (a2,
ntaut hors));

bool ean testSizel =

nt aut hors. si ze() ==
bool ean testSize2 =

aut horlist.size() == 2;

bool ean testContainsl =
this.ntauthors. contains(this.al)
== fal se;
bool ean testContains2 =
this.authorlist.contains(this.a2)
== true;
bool ean test Contains3 =
this.authorlist.contains(a3)
== fal se;

}

Figure 1: Class definitions for lists of books and authors

Lecture 16 (©2006 Felleisen, Proulx, et. al.

Fococmmaanaan +
| ILoObject |<------------ +
[—— + |
[—— + |

I\ |

|

| |
___________________ |
| | |

LT + B L LT + |

| MrLoObj ect | | ConsLoOhj ect ||

R L + R L + |

R R + +-| Object first ||

| | I'LoObject rest |-+
| Feccmecmeaae e +
|
v
E - +
| Object |
oo +
| Type ??2? |
[|
B T +

Figure 2: A class diagram lists of books and authors

data — and see that the examples of lists of books and of the lists of authors
are the same as before. We now compar the methods. The method size()
does not refer at all to the any instances of objects contained in the list -
indeed, the code was already identical in the two original lists. We now
look at the similarities and differences between the two implementations
of the method contains.

cl ass ConsLoBook i npl enents | LoBook{ cl ass ConsLoAut hor inpl enents | LoAut hor {

I+ TEMPLATE: | TEMPLATE:

..this.first.. - Book ..this.first.. - Aut hor
..this.rest.. - | LoBook ..this.rest.. - | LoAut hor
..this.rest.size().. - int ..this.rest.size().. - int
..this.rest.contains(Book).. - bool ean ..this.rest.contains(Author).. - bool ean
*/ */

bool ean contains (Book that){
return this.first.sane(that)
|| this.rest.contains(that);

bool ean contains (Author that){
return this.first.sanme(that)
|| this.rest.contains(that);

} }
} }

Figure 3: The method contains for lists of books and authors

The two methods differ only in type of argument consumed by the
method contains. If we replace the type by Object, the super type of both
Book and Author everything is almost OK. The only problem is that the class
Object does not provide the method same. Not only that. The method argu-

3

(©2006 Felleisen, Proulx, et. al. Lecture 16

ment in the two cases is again different.
We need a method

bool ean sane(Obj ect obj)

that is defined for any object we wish to look for in the list. We can
do this for the classes Book and Author by having both classes implement a
common interface ISame:

interface | Same{
/Il is this the same as the given object?
bool ean same(bj ect obj);

}

We will first look at how this knowledge is leveraged inside of the definition of the
method contains, then return to completing the definitions of the classes Book and Author.

We first have to indicate inside the method contains that the field this.first is an instance
of a class that defines the method boolean same(Object obj). To do so, we use cast:

bool ean contains (Object that){
return ((lSame)this.first).sanme(that)
|| this.rest.contains(that);

We enclose in parentheses the type we wish to cast to, and enclose in another set
of parentheses the cast directive and the expression that should be cast to that type:
((ISame)this.first). The entire expression now represents a value of the type ISame and can
invoke any methods declared in the ISame interface. The compiler will replace then at run
time look for a method with the signature boolean same(Object obj). If we construct the list
with an object that does not implement the ISame interface, the program will fail at the
runtime with the ClassCastException.

We now look at how the method boolean same(Object obj) is implemented in the classes
Book and Author:

cl ass Book inplenents | Same{ class Author inplenments | Same{
String title; String nane;
int year; int year;
Book(String title, int year){ Aut hor (String name, int year){
this.title = title; this. name = nane;
this.year = year; this.year = year;
}
bool ean same(bj ect obj){ bool ean same(bj ect obj) {
if (obj instanceof Book) if (obj instanceof Author)
return this.same((Book)obj); return this.sanme((Author)obj);
el se el se
return false; return fal se;
}
bool ean sane(Book that){ bool ean same(Aut hor that){
return return
this.title.equals(that.title) t hi s. nane. equal s(that. nane)
&& this.year == that.year; && this.year == that.year;
} }
} }

Lecture 16 (©2006 Felleisen, Proulx, et. al.

We have two different methods named same overloaded with two dif-
ferent types of arguments. Inside the method contains the expected method
for comparison only knows that the argument is of the type Object. As the
result, the compiler invokes the method same(Object obj). Each of the two
classes, Book/Author then first verifies that the argument is indeed another
Book / Author, and if true, it invokes the original same method that compares
the corresponding fields.

The tests are the same as before:

cl ass Exanpl es{
Exanples () {}

Book b1l new Book("DVC', 2003);

= Aut hor al new Aut hor ("DB", 1956);
Book b2 = new Book("LPP", 1942);

Aut hor a2 = new Aut hor (" St Ex", 1900);

Book b3 new Book("Ht DP", 2001); Aut hor a3 new Aut hor ("M, 1972);
| LoObj ect ntbooks = | LoObj ect ntauthors =

new MILoObj ect () ; new MILoObj ect ();
| LoObj ect booklist = | LoObj ect authorlist =

new ConsLoObj ect (b1,
new ConsLoQbj ect (b2,

new ConsLoObj ect (al,
new ConsLoCbj ect (a2,

bool ean test Cont ai nsBookl =

thi s. nt books. contai ns(this.bl) ==
fal se;

bool ean test Cont ai nsBook2 =

this. booklist.contains(this.b2) ==
true;

bool ean test Cont ai nsBook3 =

thi s. booklist.contains(b3) ==
fal se;

nt books)) ; nt aut hors));
bool ean testSi zeBookl = bool ean testSizeAuthorl =
nt books. si ze() == 0; nt aut hors. si ze() == 0;
bool ean testSi zeBook2 = bool ean testSizeAuthor2 =
bookl i st.size() == 2; authorlist.size() == 2;

bool ean test Contai nsAuthorl =
this.ntauthors.contains(this.al) ==
fal se;
bool ean test Cont ai nsAut hor2 =
this.authorlist.contains(this.a2) ==
true;
bool ean test Cont ai nsAut hor 3 =
this.authorlist.contains(a3) ==
fal se;

The class diagram for our complete solution is shown in figure 4:

We summarize what we have learned:

We replace the list of Book, Author, or some other class by a list of
Object. We refer to the class Book, or Author, etc. as the target classes
and to the classes that implement the list structure as list classes.

interface | LoObject
class MILoObj ect inplenents |LoObject

class ConsLoCbj ect inplenments |LoOhject

If a method in the list class hierarchy requires an argument of the tar-
get type, we replace if with the argument of the type Object.

interface | LoObject{
bool ean contai ns(bj ect obj);

}

(©2006 Felleisen, Proulx, et. al. Lecture 16

o If the method in the list classes invokes a method that is to be imple-
mented by our target class, we proceed as follows:

class CosnLoCbject ... {
bool ean cont ai ns(Cbj ect obj){
. this.first.same(that) ...

}
}

— Define an common interface (we will call it Icommon) that con-
tains only the desired method. If the method consumes an object
of the type of the target class, change it to the type Object.

interface | Sane {
bool ean same(Cbj ect obj);

}

— Make every target class implement the Icommon interface. If the
method consumes an object of the Object class that previously
was of the type target class, the method will have two clauses:

* If the argument is instanceof the target class, invoke the orig-
inal method, casting the argument to the target class. The
method is now overloaded — with two variants of the argu-
ment type - the original one of the target type and the type
Object.

* Else, the method invocation is invalid and produces an er-
ror. You decide whether it should just be false for methods
that produce boolean value, or whether the method should
throw an exception (probably the ClassCastException.

cl ass Book inplenents | Same{
B i)ool ean same(Obj ect obj){
if (obj instanceof Book)
return this.same((Book)obj);
el se

throw new O asCast Excepti on(
"Cannot conpare a Book with other object");

.

— In the list classes cast the target object to the type of the Icommon
interface.

(©2006 Felleisen, Proulx, et. al.

Lecture 16
Fococmnaanaan +
| ILoObject |<------------ +
Fococmnaaaan + |
[+ |
I\ |
|
| |
___________________ |
| | |
LT + B L LT + |
| MrLoObj ect | | ConsLoObj ect ||
Fommmeaeas + Fommme e + |
R R + +-| Object first ||
| | I'LoCbject rest |-+
| Hemmmme e +
|
| e
| | interface |Sane
| S
| | bool ean sane(Cbj ect obj)
| e
| I\
| [
I |
v |
L T + |
| nject |
o + |
| Type ??? |
[| |
R +
I\ |
| |
|
- + |
e - - - -
| | | |
Fommmemmeiaaoan + B +
| Book | | Aut hor |
S + B +
| String title | | String name |
| int year | | int year |
o + o +

Figure 4: A class diagram for a list of objects

