
Lecture 16 c©2006 Felleisen, Proulx, et. al.

16 Lecture: Looking the Same

Goals: - Abstracting over Data Types.

Introduction

Over the past several weeks we have defined a number of lists: lists of
books, persons, recordings, blocks, and more - repeating the same code
again and again. The Design Recipe for Abstraction will guide us in learning
to remove the repetitions code. In the process, we need to learn a couple of
new language features that support such abstractions.

Examples of Code Duplication

Let us compare the code for defining a list of books and a list of authors:
+---------+
| ILoBook |<------------+
+---------+ |

/ \ |
| |

- - - - - - - - - - |
| | |

+----------+ +--------------+ |
| MTLoBook | | ConsLoBook | |
+----------+ +--------------+ |
+----------+ +-| Book first | |

| | ILoBook rest |--+
| +--------------+
|
v

+---------------+
| Book |
+---------------+
| String title |
| int year |
+---------------+

+-----------+
| ILoAuthor |<--------------+
+-----------+ |

/ \ |
| |

- - - - - - - - - - |
| | |

+------------+ +----------------+ |
| MTLoAuthor | | ConsLoAuthor | |
+------------+ +----------------+ |
+------------+ +-| Author first | |

| | ILoAuthor rest |--+
| +----------------+
|
v

+--------------+
| Author |
+--------------+
| String name |
| int year |
+--------------+

We also include the code for two methods we have seen several times:
size() that counts the number of elements in the list, and contains(Book/Author
that) that determines whether the list contains the given book or the given
author, respectively.

The class diagrams are nearly identical. So is the code. The only differ-
ence is the reference to the class of data that the elements of the list repre-
sent, either Book or Author. In Java, every class implicitly extends the super
class of all classes, class Object. If we replace all occurrences of Book or Au-
thor by Object — except for the definitions of the two classes, we get the
follwing class diagram:

The type of the field first in the class ConsLoObject is Object. That means,
that it can be an instance of any of the classes that extend Object. Obviously,
instances of Book or Author are among them. We can test our examples of

1

c©2006 Felleisen, Proulx, et. al. Lecture 16

interface ILoBook{
// to compute the size of this list
int size();

// is the given book in this list?
boolean contains (Book that);

}

class MTLoBook implements ILoBook{
MTLoBook() {}

int size(){ return 0; }

boolean contains (Book that){
return false;

}
}

class ConsLoBook implements ILoBook{
Book first;
ILoBook rest;

ConsLoBook(Book first,
ILoBook rest){

this.first = first;
this.rest = rest;

}

/* TEMPLATE:
..this.first.. - Book
..this.rest.. - ILoBook
..this.rest.size().. - int
..this.rest.contains(Book).. - boolean

*/
int size(){

return 1 + this.rest.size();
}

boolean contains (Book that){
return this.first.same(that)

|| this.rest.contains(that);
}

}

interface ILoAuthor{
// to compute the size of this list
int size();

// is the given author in this list?
boolean contains (Author that);

}

class MTLoAuthor implements ILoAuthor{
MTLoAuthor() {}

int size(){ return 0; }

boolean contains (Author that){
return false;

}
}

class ConsLoAuthor implements ILoAuthor{
Author first;
ILoAuthor rest;

ConsLoAuthor(Author first,
ILoAuthor rest){

this.first = first;
this.rest = rest;

}

/* TEMPLATE:
..this.first.. - Author
..this.rest.. - ILoAuthor
..this.rest.size().. - int
..this.rest.contains(Author).. - boolean

*/
int size(){

return 1 + this.rest.size();
}

boolean contains (Author that){
return this.first.same(that)

|| this.rest.contains(that);
}

}
class Examples{

Examples () {}

Book b1 = new Book("DVC", 2003);
Book b2 = new Book("LPP", 1942);
Book b3 = new Book("HtDP", 2001);

ILoBook mtbooks =
new MTLoBook();

ILoBook booklist =
new ConsLoBook(b1,
new ConsLoBook(b2,

mtbooks));

boolean testSize1 =
mtbooks.size() == 0;

boolean testSize2 =
booklist.size() == 2;

boolean testContains1 =
this.mtbooks.contains(this.b1)

== false;
boolean testContains2 =

this.booklist.contains(this.b2)
== true;

boolean testContains3 =
this.booklist.contains(b3)

== false;
}

class Examples{
Examples () {}

Author a1 = new Author("DB", 1956);
Author a2 = new Author("StEx", 1900);
Author a3 = new Author("MF", 1972);

ILoAuthor mtauthors =
new MTLoAuthor();

ILoAuthor authorlist =
new ConsLoAuthor(a1,
new ConsLoAuthor(a2,

mtauthors));

boolean testSize1 =
mtauthors.size() == 0;

boolean testSize2 =
authorlist.size() == 2;

boolean testContains1 =
this.mtauthors.contains(this.a1)

== false;
boolean testContains2 =

this.authorlist.contains(this.a2)
== true;

boolean testContains3 =
this.authorlist.contains(a3)

== false;
}

Figure 1: Class definitions for lists of books and authors

2

Lecture 16 c©2006 Felleisen, Proulx, et. al.

+-----------+
| ILoObject |<------------+
+-----------+ |
+-----------+ |

/ \ |
--- |
| |

------------------- |
| | |

+------------+ +----------------+ |
| MTLoObject | | ConsLoObject | |
+------------+ +----------------+ |
+------------+ +-| Object first | |

| | ILoObject rest |-+
| +----------------+
|
v

+------------+
| Object |
+------------+
| Type ??? |
| ... |
+------------+

Figure 2: A class diagram lists of books and authors

data — and see that the examples of lists of books and of the lists of authors
are the same as before. We now compar the methods. The method size()
does not refer at all to the any instances of objects contained in the list -
indeed, the code was already identical in the two original lists. We now
look at the similarities and differences between the two implementations
of the method contains.

class ConsLoBook implements ILoBook{

/* TEMPLATE:
..this.first.. - Book
..this.rest.. - ILoBook
..this.rest.size().. - int
..this.rest.contains(Book).. - boolean

*/

boolean contains (Book that){
return this.first.same(that)

|| this.rest.contains(that);
}

}

class ConsLoAuthor implements ILoAuthor{

/* TEMPLATE:
..this.first.. - Author
..this.rest.. - ILoAuthor
..this.rest.size().. - int
..this.rest.contains(Author).. - boolean

*/

boolean contains (Author that){
return this.first.same(that)

|| this.rest.contains(that);
}

}

Figure 3: The method contains for lists of books and authors

The two methods differ only in type of argument consumed by the
method contains. If we replace the type by Object, the super type of both
Book and Author everything is almost OK. The only problem is that the class
Object does not provide the method same. Not only that. The method argu-

3

c©2006 Felleisen, Proulx, et. al. Lecture 16

ment in the two cases is again different.
We need a method

boolean same(Object obj)

that is defined for any object we wish to look for in the list. We can
do this for the classes Book and Author by having both classes implement a
common interface ISame:

interface ISame{
// is this the same as the given object?
boolean same(Object obj);

}

We will first look at how this knowledge is leveraged inside of the definition of the
method contains, then return to completing the definitions of the classes Book and Author.

We first have to indicate inside the method contains that the field this.first is an instance
of a class that defines the method boolean same(Object obj). To do so, we use cast:

boolean contains (Object that){
return ((ISame)this.first).same(that)

|| this.rest.contains(that);
}

We enclose in parentheses the type we wish to cast to, and enclose in another set
of parentheses the cast directive and the expression that should be cast to that type:
((ISame)this.first). The entire expression now represents a value of the type ISame and can
invoke any methods declared in the ISame interface. The compiler will replace then at run
time look for a method with the signature boolean same(Object obj). If we construct the list
with an object that does not implement the ISame interface, the program will fail at the
runtime with the ClassCastException.

We now look at how the method boolean same(Object obj) is implemented in the classes
Book and Author:

class Book implements ISame{
String title;
int year;

Book(String title, int year){
this.title = title;
this.year = year;

}

boolean same(Object obj){
if (obj instanceof Book)

return this.same((Book)obj);
else

return false;
}

boolean same(Book that){
return

this.title.equals(that.title)
&& this.year == that.year;

}
}

class Author implements ISame{
String name;
int year;

Author(String name, int year){
this.name = name;
this.year = year;

}

boolean same(Object obj){
if (obj instanceof Author)

return this.same((Author)obj);
else

return false;
}

boolean same(Author that){
return

this.name.equals(that.name)
&& this.year == that.year;

}
}

4

Lecture 16 c©2006 Felleisen, Proulx, et. al.

We have two different methods named same overloaded with two dif-
ferent types of arguments. Inside the method contains the expected method
for comparison only knows that the argument is of the type Object. As the
result, the compiler invokes the method same(Object obj). Each of the two
classes, Book/Author then first verifies that the argument is indeed another
Book/Author, and if true, it invokes the original same method that compares
the corresponding fields.

The tests are the same as before:

class Examples{
Examples () {}

Book b1 = new Book("DVC", 2003);
Book b2 = new Book("LPP", 1942);
Book b3 = new Book("HtDP", 2001);

ILoObject mtbooks =
new MTLoObject();

ILoObject booklist =
new ConsLoObject(b1,
new ConsLoObject(b2,

mtbooks));

boolean testSizeBook1 =
mtbooks.size() == 0;

boolean testSizeBook2 =
booklist.size() == 2;

boolean testContainsBook1 =
this.mtbooks.contains(this.b1) ==

false;
boolean testContainsBook2 =

this.booklist.contains(this.b2) ==
true;

boolean testContainsBook3 =
this.booklist.contains(b3) ==

false;

Author a1 = new Author("DB", 1956);
Author a2 = new Author("StEx", 1900);
Author a3 = new Author("MF", 1972);

ILoObject mtauthors =
new MTLoObject();

ILoObject authorlist =
new ConsLoObject(a1,
new ConsLoObject(a2,

mtauthors));

boolean testSizeAuthor1 =
mtauthors.size() == 0;

boolean testSizeAuthor2 =
authorlist.size() == 2;

boolean testContainsAuthor1 =
this.mtauthors.contains(this.a1) ==

false;
boolean testContainsAuthor2 =
this.authorlist.contains(this.a2) ==

true;
boolean testContainsAuthor3 =
this.authorlist.contains(a3) ==

false;

The class diagram for our complete solution is shown in figure 4:
We summarize what we have learned:

• We replace the list of Book, Author, or some other class by a list of
Object. We refer to the class Book, or Author, etc. as the target classes
and to the classes that implement the list structure as list classes.

interface ILoObject
class MTLoObject implements ILoObject
class ConsLoObject implements ILoObject

• If a method in the list class hierarchy requires an argument of the tar-
get type, we replace if with the argument of the type Object.

interface ILoObject{
boolean contains(Object obj);

}

5

c©2006 Felleisen, Proulx, et. al. Lecture 16

• If the method in the list classes invokes a method that is to be imple-
mented by our target class, we proceed as follows:

class CosnLoObject ... {
boolean contains(Object obj){

... this.first.same(that) ...
}

}

– Define an common interface (we will call it Icommon) that con-
tains only the desired method. If the method consumes an object
of the type of the target class, change it to the type Object.

interface ISame {
boolean same(Object obj);

}

– Make every target class implement the Icommon interface. If the
method consumes an object of the Object class that previously
was of the type target class, the method will have two clauses:

∗ If the argument is instanceof the target class, invoke the orig-
inal method, casting the argument to the target class. The
method is now overloaded — with two variants of the argu-
ment type - the original one of the target type and the type
Object.

∗ Else, the method invocation is invalid and produces an er-
ror. You decide whether it should just be false for methods
that produce boolean value, or whether the method should
throw an exception (probably the ClassCastException.

class Book implements ISame{
...

boolean same(Object obj){
if (obj instanceof Book)
return this.same((Book)obj);

else
throw new ClasCastException(

"Cannot compare a Book with other object");
}

...
}

– In the list classes cast the target object to the type of the Icommon
interface.

6

Lecture 16 c©2006 Felleisen, Proulx, et. al.

+-----------+
| ILoObject |<------------+
+-----------+ |
+-----------+ |

/ \ |
--- |
| |

------------------- |
| | |

+------------+ +----------------+ |
| MTLoObject | | ConsLoObject | |
+------------+ +----------------+ |
+------------+ +-| Object first | |

| | ILoObject rest |-+
| +----------------+
|
| +--------------------------+
| | interface ISame |
| +--------------------------+
| | boolean same(Object obj) |
| +--------------------------+
| / \ / \
| | |
| - - - - - - |
v |

+------------+ |
| Object |
+------------+ |
| Type ??? |
| ... | |
+------------+

/ \ |

| |
|

+-----------------------+ |
- - -|- - - - - - - - - - - -|- - - -
| | | |

+--------------+ +-------------+
| Book | | Author |
+--------------+ +-------------+
| String title | | String name |
| int year | | int year |
+--------------+ +-------------+

Figure 4: A class diagram for a list of objects

7

