
Lab 13 c©2006 Felleisen, Proulx, et. al.

13 User Iteractions

Goals

In this lab you will learn a little about programming user interactions using
the Model-View-Control pattern for organizing the responsibilities.

The JPT library allows you to concentrate on the key concepts and avoid
the pitfalls of multitude of details, typically associated with GUI program-
ming.

The Model and the View

The diagram below (on the next page) describes the classes already in-
cluded in this application:

Here is a brief description of the role these files play in the application.

The model

The program deals with balloons (for now just three of them).

• class Balloon This class represents one balloon object, allows the user
to move it, paint it, and to compare two balloons for closeness to the
top of the graphics window.

We could have other classes here, such as a list of balloons, or a list of
tied-up balloons and a list fo floating balloons, etc.

The views

We can view the information about a particular Balloon object in several
different ways. The BalloonInput interface provides two methods for getting
the data needed to construct an instance of a new Balloon.

To display the information about a Balloon object, we can print a String
that represents the Balloon object in the console, or paint it int the given
window, or display the values of its fields in a GUI.

To get the data from the user that is needed to instantiate a new Balloon
we can read from the console, or from a GUI.

• interface BalloonInput contains two methods: demandBalloon() and re-
questBalloon() that allow us to instantiate a Balloon object from the
source that implements the methods.

1

c©2006 Felleisen, Proulx, et. al. Lab 13

+--------------+
| DisplayPanel |
+--------------+

/ \

|

+---------------------------+
| BalloonControl |
+---------------------------+

+--| BalloonInputView bView |
| | Balloon b |---------+
| | BufferredPanel window |---+ |
| | SimpleAction paintAction | | v
| | SimpleAction newAction | | +------------+
| | SimpleAction cancelAction | | | Balloon |
| +---------------------------+ | +------------+
	void paintAction()			int x
	void paintAction()			int y
	void cancelAction()			int radius
+---------------------------+		Color c		
	+------------+			
v				
+---------------+				
	BufferedPanel			
+---------------+				
+-------------------------------------+				
	interface: BalloonInput			
+-------------------------------------+				
	Balloon demandBalloon()			
	Balloon requestBalloon()			
	throws CancelledException			
+-------------------------------------+				
/ \				
+- - - - - - - - - - - - - - - - -+				
+-----------------------+ +---------------------+				
	GUIBalloonInput		ConsoleBalloonInput	
+-----------------------+ +---------------------+				
	BalloonInputView bGUI	--+ +---------------------+		
+-----------------------+				
	+---------+			
		Display		
+---------------------+ | +---------+

| | / \
| | ---
v v |

+----------------------------+
| BalloonInputView |
+----------------------------+
| TextFieldView xTFV |
| TextFieldView yTFV |
| SliderView rSlider |
| ColorView cVieW |
+----------------------------+
| TablePanel createDisplay() |
+----------------------------+

2

Lab 13 c©2006 Felleisen, Proulx, et. al.

• class ConsoleBalloonInput implements the BalloonInput interface used
for reading the input from the console.

• class BalloonInputView defines a GUI to request the user input for
the data needed to initialize one Balloon instance. It contains two
TextFieldViews, one SliderView, and one ColorView. It also allows us
to display the data that represents an instance of a Balloon.

• class GUIBalloonInput implements the BalloonInput interface for ex-
tracting the user input from the BalloonInputView GUI.

The control

• class BalloonControl adds to the GUI Actions. These are buttons that
allow the user to choose an action, such as read the Balloon data from
a GUI and display the Balloon in the given canvas. (Our canvas is a
window – a buffered panel.)

Run the code, and note the behavior in response to the various buttons.

Getting Familiar with the Environment

1. The model

Read the code for the class Balloon. Add the method eraseBalloon
which will paint the balloon in a white color (Color.white). Make sure
you have the examples and tests for this method.

2. The console input

Read the code for the method testConsoleInput in the class Interactions.
Describe to your partner what the method does. Look at the Con-
soleBalloonInput class and see how the methods demandBalloon and re-
questBalloon are implemented. Run the code and see what happens if
you type in a wrong data, or when you do not provide any input.

3. The actions

Find the code for the action for the New button. Currently, it only
sets the value of the Balloon instance variables. Add to this action a
call to the method which paints the balloon, from the class Balloon.
Make sure it works.

3

c©2006 Felleisen, Proulx, et. al. Lab 13

4. Text input from a GUI

Find all places where the xTFV is defined or used. It is constructed
in the class BalloonInputView. This class also defines the methods de-
mandBalloon and requestBalloon, each of them produces a new instance
of a Balloon from the user inputs.

In the class BalloonControl user input to the BalloonView initializes the
value of a Balloon object that represents our model. We could add to
our model a list of tied balloons and a list of floating balloons, and
more - for example a child holding the balloon.

DO IT Using a similar technique, define a new TextFieldView named
rTFV, to represent the numerical value of the Balloon radius.

5. Connecting slider with a text field

Test the behavior of the slider. Does it have any effect on the bal-
loon? Does it have any effect on the value displayed in the rTFV
field? Change the value of the rTFV field. Does it affect the slider?
Does it affect the balloon?

The two views represent the same value and so should be designed
to mimic each other. the slider has to act by changing its position
whenever a new value is typed into the text field. The value in the
text field has to change when the silder iss moved, so it reflects its
current position.

Define two new SimpleActions and the corresponding methods — an
rTFVaction and a SliderAction. It does not matter what you choose for
the label, because we are not going to use the actions with a button.

The first one void rTFVaction will be invoked when the value in the
field rTFV changes. It should then set the value of the balloon radius
and the value of the rSlider to the value displayed in the rTFV. To set
the state of the rSlider use the method

rSlider.setViewState("" + b.radius);

The second method void rSliderAction() will be invoked every time
the location of the slider (and the value it represents) changes. It must
then change the radius of the balloon and set the view state of the rTFV
calling the method setViewState in a manner similar to the above. If
you run the program now, you may be surprised to see that these

4

Lab 13 c©2006 Felleisen, Proulx, et. al.

changes have no effect. Can you think of the way to test that the
methods work correctly?

6. Listening to changes in the values

Now you have to tell the rSlider and the rTFV to perform this action
when their values change. The following two statements have to be
added at the end of the method void createViews():

rTFV.addActionListener(rTFVaction);
rSlider.addSlidingAction(sliderAction);

The first one tells the rTFV to perform the rTFVaction whenever its
value changes. The second one tells the rSlider to perform the slid-
erAction whenever the position of the slider (and thus the value it
represents) changes.

Test that this works.

7. Reporting changes in the model to the view

Now that you have seen the method setViewState, add such method
to the class BalloonInputView. To see that is works, we need to modify
some of the fields of a Balloon instance and invoke the method. Try it.

8. Adding mouse actions

In the last part you will control the balloon with the mouse. You need
to define what should happen when the mouse is clicked (or dragges,
or released, etc.). You need to specify which GUI component should
listen to the mouse and the user mouse actions. You then need to
connect the MouseListener with the action it should trigger.

Build a separate frame

The first thing you need to do is to change the manner in which the
GUI is displayed. Look at the code in the class Interactions for the
method testBalloonControl(). Replace the line which calls the method
showOKDialog with the following:

JPTFrame.createQuickJPTFrame("Balloon Control", bc);

This places the BalloonControl into a window that runs in its own
thread, i.e. independently of the rest of the application. That allows

5

c©2006 Felleisen, Proulx, et. al. Lab 13

the rest of the appplication to watch out for the mouse movement and
clicks inside of the graphics window.

Define a mouse action The first mouse action you will build will
increase the radius of the balloon by ten, every time you click the
mouse. All of this is in the class BalloonControl. Start by defining the
method
protected click(MouseEvent mevt) which does the following:

• Print into the console a message that the mouse was clicked.

• Erase the balloon

• Increase the balloon radius by 10

• Set the view state of the BalloonInputView bView to the current
values of the balloon. (Only the radius has changed, but it is
easier to let the BalloonView do the whole job by invoking the
method setViewState.

• Finally, paint the changed balloon.

9. Defining and installing Mouse action adapter

Install a MouseActionAdapter for the BufferedPanelas follows:

• After the definition of the BufferedPanel, add the definition:

public MouseActionAdapter mouseAdapter;

• Inside of the constructor for the class BalloonControl first initial-
ize the mouseAdapter as follows:

mouseAdapter = window.getMouseActionAdapter();

• Add the action to perform when the mouse is clicked as follows:

// respond to mouse clicks
mouseAdapter.addMouseClickedAction(

new MouseAction() {
public void mouseActionPerformed(MouseEvent mevt){

click(mevt);
}

});

At this point you should test that your program runs as you ex-
pected.

6

Lab 13 c©2006 Felleisen, Proulx, et. al.

10. Tracking the mouse movement

Finally, you will make the balloon move when the mouse moves. Do
all the steps you have done for the clicked action, but do not get a
new mouseAdapter. The following code will add the action:

// track mouse motions
mouseAdapter.addMouseMovedAction(

new MouseAction() {
public void mouseActionPerformed(MouseEvent mevt){

track(mevt);
}

});

Inside of the track method get the coordinates of the mouse as follows:

b.x = mevt.getX();
b.y = mevt.getY();

and see what your program does. (Probably nothing - you still have
to erase the old balloon, before you make the changes, paint the new
balloon, and as a courtesy, set the view state for the view.) Now you
should have fun.

7

