
Lab 12 c©2006 Felleisen, Proulx, et. al.

12 Java Exceptions, Linked Lists, Queues, Stacks

Activities

• Use exceptions to detect and handle errors

• Learn to use and implement doubly linked list, stack, and queue.

Lab Preparation

Download the provided zip file and unzip it. Create a new Eclipse project
named Lab12. Add the given code to the project and link the external JAR
jpt.jar to the project. You should have the following Java files:

• interface ISame that should be implemented by any class that needs
to be tested for equality.

• class Examples that contains the test suite. It extends SimpleTestHar-
ness.

• class SimpleTestHarness that manages the test evaluation and report-
ing.

• class Interactions that provides a framework for user interactions.

• class MyLinkedLlist that you will complete.

• class MyStack that you will implement.

• class MyQueue that you will implement

• class Person to provide data for our data structures

Activity 1: Using Exceptions

Exceptions provide a general method for dealing with errors that occur
during the execution of a program. When an error occurs, an exception ob-
ject is created. This exception can then be detected and handled smoothly,
instead of causing the entire program to fail.

1



c©2006 Felleisen, Proulx, et. al. Lab 12

Catching Exceptions

Exceptions are either automatically created by Java when certain types of
errors occur or can be created manually by creating a new instance of an
exception class and throwing that exception.

As an example, consider the case of detecting when a divide by zero er-
ror occurs. Look at the divide method in the Interactions class. This method
takes two int’s, x and y, and returns x/y. What happens if y is 0? In this
case, Java throws an ArithmeticException that represents the error. We use a
try-catch to handle the occurrence of this error in a smooth way. The format
of a try-catch is as follows:

try {
// some code that could result in an exception being thrown

} catch (ExceptionType1 e) {
// handle exceptions of Type1

} catch (ExceptionType2 e) {
// handle exceptions of Type2

}

There is one try-block, which contains code that can possibly create an
exception. This is followed by one or more catch-blocks, each of which
deals with a specific type of exception. In the case of the divide method
there is only one type of exception we are interested in, so we have only
one catch-block.

Try running the project and executing the divide method with different
values for x and y. What happens when you enter 0 for y?

Manually Creating and Throwing Exceptions

You can manually create and throw an exception when an abnormal sit-
uation occurs. In this case, what situations are abnormal are defined by
the programmer. For example, we may only want to allow our program to
work with int’s less than 1000. See the multiply method in the Interactions
class. This method takes two int’s, x and y, and returns x*y. If x ∗ y > 1000
an exception is created and immediately caught. Try running this method
with various inputs and observe the results.

2



Lab 12 c©2006 Felleisen, Proulx, et. al.

Defining a Method to Throw Exceptions

In the case of multiply, we created and immediately caught an exception.
Sometimes we may not know how to immediately handle the exception
and want to pass the exception back to where the method was called and
handle the error there. We define methods to throw errors in the following
way:

void foo(. . . ) throws ExceptionType1, ExceptionType 2 {
// some code that can throw ExceptionType1 and ExceptionType2

}

Any method that calls foo should place that call of foo in a try-catch block
to handle the error or should itself be declared to throw those exceptions
to a higher level.

As an example, see multiplyAndThrow in Interactions. This method is
similar to multiply but the exceptions are not immediately handled. Try
running this method and causing an exception to be thrown. Notice that
the exception is printed to the console in red. This signifies that the excep-
tion was never caught and was reported by Java as a fatal error.

The method multiplyAndCatch calls multiplyAndThrow and handles the
exceptions that it can throw with a try-catch statement.

Exercise:

Add the methods subtractAndThrow and subtractAndCatch to the Interactions
class. These methods should be similar to subtractAndThrow and subtrac-
tAndCatch described above. Given two int’s, x and y, they should return
x − y and should produce an error if the result is negative.

Activity 2: Defining Exceptions

The programmer can define new Exceptions, if necessary. In our case, the
ArithmeticException does not convey the fact that we exceeded our own
bound for the size of the result. We can instead define a class BigNumEx-
ception that extends Exception:

class BigNumException extends Exception{
BigNumException(String message){

super(message);
}

}

3



c©2006 Felleisen, Proulx, et. al. Lab 12

1. Add this class to your project and change the exceptions in the meth-
ods that do multiplication to use the BigNumException.

2. Add tests for the methods that do multiplications.

Activity 3: Using Collections

The Collection interface is the root of a hierarchy of interfaces that represent
groups of objects. There are three main types of collections, each with a
corresponding interface:

• List — an ordered collection of objects. Each object in a list has a
specific position in the list. Lists can contain multiple occurrences
of the same object. The lists you have been designing and using so
far are all examples of this kind of collection. We will use only list
collections in this lab, but you already used other types of collections
in earllier labs and assignments.

• Set — an unordered collection of objects that can not contain dupli-
cates. The set collections correspond closely to the mathematical no-
tion of sets.

• Map — an unordered collection that relates keys to values. An exam-
ple of this type of data is a dictionary. The words in the dictionary are
keys that are mapped to their definitions, the values.

Linked Lists

Find the LinkedList class in the Java API. Read the Javadocs to see what
methods it provides. Notice that it implements both the Stack and Queue
interface. Look up the Javadocs for both of those interfaces as well.

We will first learn how to test this implementation of linked lists, then
build our own MyLinkedList. Finally, we will use our implementation of a
doubly likked list to implement our version of the MyStack and MyQueue.

We will use this list class as the basis of two new classes, MyStack and
MyQueue.

Testing LinkedList Class

Methods testStandardLinkedList and testListIteratorOfStandard are examples
of how to design tests for some of the methods implemented by the LinkedList

4



Lab 12 c©2006 Felleisen, Proulx, et. al.

class. We will use variants of these methods to test our implementation of
a linked list data structure.

Exercise: Implement Linked List Iterator

The class MyLinkedList provides an implementation of a linked list where
each element is an instance of a Node class:

class ListNode<E>{
E data;
ListNode<E> prev;
ListNode<E> next;
ListNode(E data, ListNode<E> prev, ListNode<E> next){

this.data = data;
this.prev = prev;
this.next = next;

}
}

Draw a picture that illustrates how the new elements are added to this
linked list. Once you undserstand the implementation, complete the class
definition of the MyLLIterator inner class. Run the tests in the Examples
class.

Exercise: Define Stack Methods

Look up the Javadocs for the interface Stack. Complete the implementation
of the class MyStack using the class MyLinkedList. As an example, see the
testStack method in the Examples class.

Methods to add to MyStack:

• push: add an element to the top of the stack

• pop: return the element at the top of the stack and remove it from the
stack

• peek: return the element at the top of the stack without removing it

• empty: return true if the stack is empty, return false otherwise

5



c©2006 Felleisen, Proulx, et. al. Lab 12

Exercise: Define Queue Methods

Look up the Javadocs for the interface Queue. Complete the implementa-
tion of the class MyQueue using the class MyLinkedList.

Methods to add to MyQueue:

• element: return the element front of the queue without removing it

• offer: add an element to the back of the queue

• poll: return the element at the front of the queue and remove it from
the queue

• peek: return the element front of the queue without removing it, re-
turn null, if the queue is empty

• remove: return the element at the front of the queue and remove it
from the queue

• empty: return true if the queue is empty, return false otherwise

6


