
Lab 11 c©2006 Felleisen, Proulx, et. al.

11 Java API, Exceptions, and Collections

Activities

1. Familiarize yourself with the Java Application Programmers Inter-
face (API)

2. Learn the basics of working with the Java Collections Framework

3. Use exceptions to detect and handle errors

Resources

Download the provided zip file and unzip it. Create a new Eclipse project
named Lab11. Add the given code to the project and link the external JAR
jpt.jar to the project. Also add the SimpleTestHarness.jar. You should have
the following Java files:

• class Examples that is to be used for tests that are not a part of the
program that interacts with the user

• class Interactions that controls our user interactions - you will add a
couple of methods here

• class Reply - a skeleton, you have to add the functionality

• class SampleEliza the database of answers and some of the methods
dealing with the answers to the patient.

11.1 Activity: Reading JavaDocs

Go to the Java API at http://java.sun.com/j2se/1.5.0/docs/api/ . Book-
mark this page! When coding you will often use classes that are provided
for you by Java. The Java API describes these classes and lists all of the
fields and methods of these classes that are available to you.

The front page of the Java API lists all of the packages provided by Java.
A package is a collection of related interfaces and classes.

1

c©2006 Felleisen, Proulx, et. al. Lab 11

Tips For Quickly Finding Class Specifications

The left frame of the API page lists all classes alphabetically. If you want
the specifications for a specific class you can click in this frame and use
your web browsers search function to find that class. For example, find the
ArrayList class. Another way to quickly find Java API specifications is to
search Google for ”java api class x”, where x is the name of the class you’re
searching for. For example, the search ”java api class arraylist” returns the
specifications for class ArrayList as the first result.

The Anatomy of a JavaDoc

All of the specifications are in a JavaDoc format. JavaDocs are automati-
cally generated from source code based on specifically formated comments
that the programmer adds for each class and each method. We won’t cover
the format of such comments here, but it’s pretty easy to do yourself. For
more details, see How to Write Doc Comments for the Javadoc.

Lets use the ArrayList JavaDoc as an example.

The top of the JavaDoc lists the other classes that ArrayList extends
and implements. In this case, ArrayList extends from the classes Object,
AbstractCollection, AbstractList, and implements the interfaces
Cloneable, Collection, List, RandomAccess, Serializable.

Next is a general description of the class. In this case, the JavaDoc
says that ArrayList is a ”Resizable-array implementation of the List in-
terface.”

Following this is a summary of fields, constructors, and methods pro-
vided by ArrayList. In general, classes will provide very few public
fields and the JavaDoc will contain mostly specifications of methods. Look
over some of the methods provided by ArrayList. We will be using a
similar classes when cover the Java Collections Framework in activity 3.

The method summaries provide headers (return type, name, and argu-
ments) and a short description of the method’s functionality. More detailed
descriptions are linked from these summaries and appear farther down on
the same page.

11.2 Activity: Working with the ArrayList

The class Words contains some Strings and ArrayLists of Strings
that we will use. Our first task is to reverse the order of the words in the

2

Lab 11 c©2006 Felleisen, Proulx, et. al.

ArrayList reversed. Design a method in the Interactions class that
reverses the order of the words in the ArrayList.

Do the following three tasks - modifying the previous solution as you
go on (or keeping the previous one and adding a new variant:

• First just produce another ArrayList with the words reversed.

• Next think of how you would reverse the elements in an ArrayList
without using another ArrayList at all.

• Finally, think of how you can modify the actual values of the ArrayList
reversed in the class Words.

Finally, pring all words, one to a line, traversing the ArrayList using
the for-each loop that uses the Java Iterator.

11.3 Activity: Working with the StringTokenizer

The text in the ArrayList words in the class Words is encoded. It represents
verses from a poem - if you read only the first words.

• Look up the StringTokenizer class in JavaDocs. The methods there al-
low you to traverse over a String and produce one word at a time
delimited by the selected characters. Read the examples. Then write
the method makeWords that consumes one String and produces an Ar-
rayList of words.

• Design the method firstWord that produces the first word from a given
String.

• If you have not done so already, modify it, so it would recognize ad-
ditional delimeters besides the default ones. Specifically, you want to
recognize comma, semicolon, and the question mark.

11.4 Activity: Working with HashMap; Catching Exceptions

Our goal now is to train our computer to be a mock psychiatrist, carrying
on a conversation with a patient. The patient (the user) asks a series of
questions. The computer-psychiatrist replies to each question as follows. If
the question starts with one of the following (key)words: Why, Who, How,
Where, When, and What, the computer selects one of the three (or more)

3

c©2006 Felleisen, Proulx, et. al. Lab 11

possible answers appropriate for that question. If the first word is none of
these words the computer replies ’I do not know’ or something like that.

• Start by designing the class Reply that holds an ArrayList of answers
to a particular question, and contains the method randomAnswer that
produces one of the possible answers each time it is invoked. Make
sure it works fine even if you add new answers to your database later.

• Next look at the class SampleEliza. This is our collection of answers.
We are giving you just a few - you can add more as you wish. The
field replies is defined as HashMap. Look up the JavaDocs for HashMap.
Ask questions, if you do not understand. The design is similar to the
IMapping interface we worked with in our earlier homeworks.

• Our goal is to select the right instance of the Reply class each time the
patient asks a question. The method get(K key) produces the correct
Reply, if it consumes one of the keywords. However, it produces null
if there is no value corresponding to the given key.

• The method findReply that is provided consumes a String and pro-
duces a reply. Here the reply just parrots the question: You asked
Modify the method so that it first extracts the first word of the ques-
tion, then uses it as a key to identify the possible set of replies from
the HashMap of replies and finally produces the answer. Of course,
we already have helper method for each of these steps.

• We now have to make sure the program does not crash when the
user asks a wrong question. Add try-catch clause to the method to
catch the NullPointerException and reply ’I do not know’ to an answer
it cannot identify. An example of how to catch an exception is given
in the method readAndWrite in the Interactions class. Use also as the
model for your final game control method.

• You can now play the game, using the playEliza method in the Inter-
actions class.

4

