
Exercise Set 9 c©2006 Felleisen, Proulx, et. al.

9 Abstracting Traversals and Algorithms.

In this problem set you will work with several predefined classes that rep-
resent cities and lists of cities, as well as files that provide infrastructure for
the tests and for dealing with user input.

The focus of your work is on learning to use abstractions in building
reusable program components.

Part 1: Iterators, Loops, User input

Start by downloading the file HW9part1.zip and making an Eclipse
project HW9part1 that contains these files. Add jpt.jar as a Variable to your
project. Run the project, to make sure you have all pieces in place. The
main method is in the class Interactions.

The classes you will work with are the following:

• class City represents name, state, latitude, longitude, and a zip code
for one city

• AListOfCities and its subclasses represent lists of cities

• interface Traversal to represent an iterator

• class Examples is the class that holds examples of data and the tests
for all your methods

• class Interactions is the class that facilitates user interactions and al-
lows you to explore the behavior of parts of your program

• class Algorithms contains methods that implement loops, such as our
orMap and filter as well as other algorithms, such as sorting algo-
rithms.

• interface ISelect and interface IObj2Obj represent function objects con-
sumed by the loop methods.

• interface ISame is our standard interface for implementing the usual
extensional equality comparison of objects

1



c©2006 Felleisen, Proulx, et. al. Exercise Set 9

9.1 Problem

For the given classes City, AListOfCities (and its subclasses), and the inter-
face Traversal design the following classes and methods:

1. Modify the classes AListOfCitiest and its subclasses to implement the
Traversal iterator.

2. In the class Algorithms design the method buildList that consumes an
Traversal iterator and produces a list of cities. In one of your tests for
this method make a copy of a list of cities and compare the results.
(You may need to reverse the result.)

3. Explore the use of the method buildList in the class Interactions by
using the InGuiTraversal, InConsoleTraversal and InFileBufferedTraversal
iterators to provide the sources of data.

4. Design the methods andMap and filter in the Algorithms class.

5. In the Examples class include the following additional tests for the
filter, orMap, and andMap methods:

• produce a list of all cities in a given state

• find out whether there are any cities in a given state in some list
of cities

• are all cities in some list in a given state

• is there a city with the given name in this list

• produce a list of all cities with the given name from some list of
cities

• do all cities in some list have the given name

6. Design insertionSort in the Algorithms class that consumes a Traversal
and a Comparator.

7. In the Examples class include the following additional tests for the
insertionSort methods:

• sort the list of cities by latitude

• sort the list of cities by city and state

• sort the list of cities by state and city

Remember, you need to design a Comparator for each case.

2



Exercise Set 9 c©2006 Felleisen, Proulx, et. al.

9.2 Problem

The goal here is to start thinking about systematic design of tests.
Read the code for the class TraversalTestHarness. Design a test suite for

it.
Write a pragraph or two of documentation that describes what kinds of

tests can/cannot be done using this test harness.

Part 2: Understanding Equality of Lists.

9.3 Problem

The goal here is to understand the difficulties in making copies of lists and
comparing them for equality.

The file CopyTests.java defines three different ways of copying lists of
cities.

• Use each of the methods to perform the following series of tasks:

– Create list1 of six cites and list2 that is the result of copying list1.

– Sort list2. Print both lists.

– Start afresh - with list2 being a new copy of list1, then change the
name of one city in list2. Again, print the resulting lists.

• Design examples/tests for each of these methods.

• Design the method that tests the equality of two lists according to
the corresponding copy method. .It produces true when comparing
a list with its copy and produces false if the other list could not be
produced by this copy method.

9.4 Writing Problem

Writing assignments are separate from the rest of the assignment for the week. You
should work on this assignment alone, and submit your work individually on the
due date for the rest of the homework. The answer should be about two paragraphs
long – not to exceed half a page or 300 words.

Look at the last problem in this homework. Think of when each type of
copying of lists is appropriate. Describe briefly the scenaria where each of
the copying would be appropriate and why.

3


