
Exercise Set 10 c©2006 Felleisen, Proulx, et. al.

10 Sorting out Sorting

In this problem set you will examine the properties of the different algo-
rithms we have seen as well as see and design new ones. The goal is to
learn to understand the tradeoffs between different ways of writing the
same program, and to learn some techniques that can be used to explore
the algorithm behavior.

Part 1: Sorting Algorithms

We have seen so far several different sorting algorithms. We have imple-
mented selection sort for ArrayList, an insertion sort that consumes an iter-
ator and produces either AListOfCities, and we have seen that we can use
the binary search tree to sort the given items it contains. The algorithms are
similar, yet they do not conform to the same interface.

Our first task is to design wrappers for all these algorithms that will al-
lows us to use them interchangeably to sort any collection of data supplied
through an iterator. Of course, we want all of them to produce the data
in a uniform format as well. Therefore, we want all of these algorithms to
produce an iterator for the sorted list.

Theabstract class ASortAlgo provides a uniform wrapper for all sorting
algorithm. The initData method consumes the given iterator for the data to
be sorted and saves the given data in a data structure appropriate for this
algorithm. So, for example, the initData method in the ArrSortSelection class
that defines a mutating selection sort that works with ArrayList data copies
the data into an ArrayList that will be later sorted.

The abstract class ASortAlgo is defined as follows:

import java.util.Comparator;
abstract class ASortAlgo {

public Comparator<City> comp;

// initialize a data set with the data generated by the traversal
abstract public void initData(Traversal<City> tr);

// sort the data set with respect to the given comparator
// produce a traversal for the sorted data
abstract public Traversal<City> sort();

}

1



c©2006 Felleisen, Proulx, et. al. Exercise Set 10

We provide an example of a class that implements the selection sort al-
gorithm. This implementation swaps the items within the ArrayList with-
out using additional space.

Here is a summary of the algorithms you will implement. Please, use
the names given below:

• ArrSortSelection

• ArrSortInsertion

• AListSortInsertion

• ABinaryTreeSort

• AListSortQuickSort

• ArrSortQuickSort

10.1 Problem

Design the method in the Tests class that determines whether the data gen-
erated by the given Traversal iterator is sorted, with regard to the given
Comparator.

10.2 Problem

Design the class ArrSortInsertion that that extends the ASortAlgo class. It
performs the insertion sort on an ArrayList. The ArrayList is initialized from
the data supplied by the Traversal iterator.

Include in the class a self test in the form of a method testSort() that
provides a test for all methods in this class. Include the main method that
invokes this test and run the test as well. There are example of this tech-
nique in nearly all files provided with this homework.

10.3 Problem

Design the class AListSortInsertion that that extends the ASortAlgo class. It
performs the insertion sort by consuming a Traversal and producing an AL-
istOfCities. Here you may not need to copy the data first, because the new
AListOfCities is generated as we traverse over the original data.

2



Exercise Set 10 c©2006 Felleisen, Proulx, et. al.

Include in the class a self test in the form of a method testSort() that
provides a test for all methods in this class. Include the main method that
invokes this test and run the test as well.

10.4 Problem

Design the class ABinaryTreeSort that that extends the ASortAlgo class. It
performs the binary tree sort on the data supplied by the Traversal iterator.

The sort method first builds the binary search tree from the data pro-
vided by the iterator, then saves the data generated by the inorder traversal
in an ArrayList or in an AListOfCities data structure.

Include in the class a self test in the form of a method testSort() that
provides a test for all methods in this class. Include the main method that
invokes this test and run the test as well.

10.5 Problem

Design the class AListSortQuickSort that performs the recursively defined
quicksort on the data supplied by the Traversal iterator and producing an
AListOfCities data structure. You will need a helper method to append two
lists together.

HtDP has a good explanation of quicksort.
Include in the class a self test in the form of a method testSort() that

provides a test for all methods in this class. Include the main method that
invokes this test and run the test as well.

10.6 Problem

Design the class ArrSortQuickSort that that extends the ASortAlgo class. It
performs the quicksort sort on an ArrayList. The ArrayList is initialized
from the data supplied by the Traversal iterator.

You may use any textbook or the web to find an implementation of this
algorithm, but you are responsible for the correctness of your implementa-
tion.

Include in the class a self test in the form of a method testSort() that
provides a test for all methods in this class. Include the main method that
invokes this test and run the test as well. There are example of this tech-
nique in nearly all files provided with this homework.

3



c©2006 Felleisen, Proulx, et. al. Exercise Set 10

Part 2: Time Trials

All of the tests we designed as the part of our code sorted only very small
collections of data. It is important to make sure that the programs work
well for large amounts of data as well. It is possible to estimate the amount
of time an algorithm should take in comparison to others. However, we
would like to verify these results on real data, and learn in the process what
other issues we need to take into consideration (for example, the space the
algorithm uses, and whether the data is already sorted or nearly sorted).

Test Data

The class DataSet represents one set of data to be sorted. It knows the size
of the data set, whether it is a sequential subset of the original data or a
randomly selected set of data. It provides an iterator that generates for the
sorting algorithm all elements in this data set.

The class TestData generates all DataSets we will use, so that we do not
have to repeat this process, and also to make sure that all algorithms will
use sort the same data. This way we can conduct ’controlled’ experiments
— comparing outcomes when solving the same problem.

Timing Tests

The class TimerTests provides a framework for conducting timing experi-
ments. It contains a field that is an instance of TestData so we do not have
to read the file citiesdb.txt of 29470 items for every test.

Finally, the method runOneTest runs one test of a sorting algorithm. It
consumes a sorting algorithm (an instance of ASortAlgo) and an instance of
DataSet. These two pieces of data determine what is the data to be sorted,
how large it is, whether it is random or sequential, which algorithm is used,
and which comparator is used. It runs the sorting algorithm with a stop-
watch and produces the timing result.

10.7 Problem

Design the classes that implement the Java Comparator interface and allow
us to compare two cities by their zip codes (class ComparatorByZip) and by
longitude (class ComparatorByLongitude).

4



Exercise Set 10 c©2006 Felleisen, Proulx, et. al.

10.8 Problem

Design the class Result that holds the results of the timing tests. For each
test we want to remember that the name of the test (for example ”Inser-
tion sort with ArrayList”), the size of the data that we sorted, whether it
was sequentially or randomly selected data, and the time it took to run the
algorithm.

Modify the method runOneTest in the class TimerTests so it produces an
instance of Result.

Include the method toString in the class Result that produces a nicely
formatted String that represents the result.

10.9 Problem

Design the method runAllTests that consumes an ArrayList of instances of
SortAlgorithm, an ArrayList of instances of Comparators, and the instance of
TestData, and runs the timing tests for each algorithm, using each of the
comparators, using both, sequential and random data. The results should
be produced as an ArrayList of Results.

10.10 Problem

Use the method runAllTests to learn about all these sorting algorithms.
Present your findings in a report that describes what you learned from run-
ning these experiments.

You should run all algorithms with all combinations of comparators
on the data in theTestData class, and explore how the performance varies
between random data and the sequentially selected data.

If one of the algorithms takes too much time or space, you may elimi-
nate it from further trials on larger datasets. However, try to understand
why that may be hapenning.

You may also modify the way the dataset is initialized. You may want
to see how your algorithm performs on sorted data, or you may want to
test several algorithms with identical data.

Produce your results in a professionally designed format — possibly
with charts. We care both about the results and about the way you present
them and explain what you learned from them.

5


