
Lab 9 c©2008 Felleisen, Proulx, et. al.

9 Abstracting over Data Type and over Methods

9.1 Introduction

Until now every time we have designed a list of data we needed to spec-
ify the type of data the list holds. The amount of repeated code has been
tremendous. In the lectures we have seen how we can abstract over the
type of data contained in a list using two different techniques, first by con-
struction a list of Objects, then by using the type parameter <T>.

In this lab we will learn how to abstract over the type of data contained
in any class hierarchy that represents a collection of data. We will first ex-
plore the techniques seen in the lectures by abstracting over the data con-
tained in binary search trees — a data structure used to store data for which
we can define ordering.

This will lead us to abstractions that represent methods (ensuring the
desired behavior for specific objects) and abstractions that allow us to ac-
cess datasets without modifying the classes that define the datasets.

The goal is both to eliminate code duplication and to design programs
that can be reused as libraries.

Work though the exercises carefully. We expect that you will finish the
work at home as the part of the next assignment.

9.2 Binary Search Trees: Abstracting with Object

A Binary Search Tree or BST is one of

• Leaf

• Node that consists of Data, a left BST and a right BST.

A. The code in the files bookstore-BST.java and bankaccts-BST.java de-
fines two examples of a binary search tree. Look at the printout of the
two programs and observe the similarities. Run each program as an
Eclipse project. Add one more example of a binary search tree to each
program.

B. Both classes, Book and Acct define the method compareTo that
compares this instance with the given instance of the same type.
Java libraries define the following interface:

1

c©2008 Felleisen, Proulx, et. al. Lab 9

interface Comparable{
/** compare this item with the given one

* return 0 if they are the same

* return <0 if the first one is smaller

* return >0 if the first one is larger

*/
int compareTo(Object o);
}

We can modify the class Book so that it implements the Comparable
interface as follows:

// was this book published before the given book?
public int compareTo(Object o){

Book that = (Book)o;
return this.year - that.year;

}

Modify the Acct class in a similar way. Make sure you run the tests
after you have made the changes.

C. Create an new Eclipse project BST-object that abstracts over the code
that defined the binary search tree by using data of the type Compara-
ble. Add to the project the classes Book and Account that you have
modified to implement the Comparable interface. Run all examples
from the previous two programs.

D. The program works, but you can see a number of yellow warning
marks along the code. Run the following experiment:

In the Examples class create a BST that contains both instances of
Acct and instances of Book.

Run the program and observe what happens. The program should
run with no error detected.

E. Now build another mixed tree in a method init as follows. First
build a tree with two nodes:

// construct a tree with two books
public IBSTComparable init(){

IBSTComparable tree = new LeafComparable();
return tree.add(eos).add(oms);

}

IBSTComparable badtree = init();

2

Lab 9 c©2008 Felleisen, Proulx, et. al.

Run the program. It should work fine.

Now change the method init to be:

// construct a tree with two books and two accounts
public IBSTComparable init(){

IBSTComparable tree = new LeafComparable();
return tree.add(eos).add(oms).add(chk1);

}

IBSTComparable badtree = init();

Run the program again. It will blow up.

We see that this approach allows us to introduce serious errors into
the program that will not be caught until the program runs.

9.3 Binary Search Trees: Abstracting with Type Parameters

The DESIGN RECIPE FOR ABSTRACTIONS consists of the following steps:

A. Observe the similarities between two or more parts of the code. High-
light the differences.

B. Replace the differences by parameters.

C. Implement the original solution or examples using the parametrized
version of the code.

D. Re-run the tests.

Following this guidelines, we want to replace the Acct] and Book in
the names of the classes that define the binary search trees by a parameter.
The parameter will represent the type of data the binary search tree will con-
tain.

A. Follow the examples from the lectures and define the class hierar-
chy for the binary search tree parametrized over the type of data, i.e.,
interface IBST<T>, class Leaf<T>, and class Node<T>, start-
ing from the original definitions.

Notice the error in the add method. For now, eliminate the problem
by casting the field this.data to Comparable as follows:

3

c©2008 Felleisen, Proulx, et. al. Lab 9

// add the given object to this binary search tree
public IBST<T> add(T o){
if (((Comparable)this.data).compareTo(o) < 0){

...
}

B. Add the code for the classes Book and Acct. Modify these classes so
that they implement the Comparable<Book> or Comparable<Acct>
interfaces. Run the tests.

C. Try again to construct a binary search tree that contains both Books
and Accts. You should fail.

9.4 Binary Search Trees with Traversal

The tester package defines the following interface:

// An interface that defines a functional iterator
// for traversing datasets
public interface Traversal<T> {

// Produce true if this Traversal represents an empty dataset
public boolean isEmpty();

// Produce the first element in the dataset
// represented by this Traversal
// Throw IllegalUseOfTraversalException if the dataset is empty.
public T getFirst();

// Produce a Traversal for the rest of the dataset
// Throw IllegalUseOfTraversalException if the dataset is empty
public Traversal<T> getRest();

}

We would like to be able to see all data in a binary search tree one at a
time, in the order from the smallest to the largest. To do so, we can imple-
ment the Traversal interface.

A. Start a new Eclipse project BST-generic-traversal and import into it
your solution to the previous problem.

B. Add the methods needed to implement the Traversal interface to
the class hierarchy that represents the binary search trees. The header
for the interface IBST<T> will be:

4

Lab 9 c©2008 Felleisen, Proulx, et. al.

interface IBST<T> extends Traversal<T>{
...
}

and we give you the implementation of the needed methods for the
class Leaf<T>:

// is this an empty dataset?
public boolean isEmpty(){
return true;

}

// produce the first element in this dataset
public T getFirst(){

throw new IllegalUseOfTraversalException(
"Cannot access the first element of an empty data set");

}

// produce a traversal for the rest of this dataset
public Traversal<T> getRest(){

throw new IllegalUseOfTraversalException(
"Cannot advance to the rest of an empty data set");

}

// is this the same BST as the given one?
public boolean same(IBST<T> t){
return t.isEmpty();

}
}

Remember that the smallest data is in the leftmost node that has no
left children, and to remove that node all we need is to move its right
child up.

Follow the Design Recipe

C. Implement the method same that implements the ISame interface for
the binary search trees, so that two trees are considered to be the same
if they contain the same data.

The ISame interface is defined in the tester package as follows:

interface ISame<T>{
boolean same(T t);

}

5

c©2008 Felleisen, Proulx, et. al. Lab 9

With this comparison the following three trees would be considered
to be the same:

5 3 4
/ \ / \ / \
3 8 * 5 3 8

/ \ / \ / \ / \ / \

* 4 * * 4 8 * * 5 *
/\ /\ / \

* * * * * *

9.5 Binary Search Trees with Comparator

There is still one problem with the program we have designed. The class
Book may have a subclass that implements a different way for comparing
two books, but as the things stand now, we could add this book to the
binary search tree and mix the two different methods for comparing books.
To assure that the binary search tree is never built incorrectly, we can do
the following:

• Allow the user to construct only a leaf and add all modes using the
add method.

• Make sure the method for adding new data is determined when the
leaf is constructed and is never modified.

The solution to this problem will be a part of the Assignment 9.

6

