
Lab 8 c©2008 Felleisen, Proulx, Jossey, et. al.

8 Mutating Object State

8.1 Goals

Today, we are attempting to give you hands on practice with four concepts
that we have introduced to you over the last two weeks.

• Java Runtime Exceptions

• Constructing and Deconstructing Sets of Data

• Modifying data

• List Item Removal

As you work through today’s lab, take care to think of the examples
that we have gone over in class, and how they can be extrapolated into the
lab. What similarities exist? Where are the differences? How do we take
the knowledge we have and solve those differences?

8.2 The Problem

Imagine that today you are tasked by Northeastern Bank Corp to create a
computer program that serves the following tasks.

• Handles data for Checking, Savings, and Credit Accounts.

• Has the ability to add new customers

• Has the ability to modify Account information for a particular cus-
tomer.

• Has the ability to remove accounts

• Throws a Java RuntimeException whenever an “unacceptable” con-
dition occurs (Too few funds in the account, incorrect account num-
bers, etc.)

A. Please begin by creating a Java Project, of your choosing, that contains
the following files in it’s source directory.

• Customer.java

• Account.java

1



c©2008 Felleisen, Proulx, Jossey, et. al. Lab 8

• Checking.java

• Savings.java

• Credit.java

• Bank.java

• AccountList.java

• CustomerList.java

• Examples.java

B. Add the method deposit to the Abstract class Account and imple-
ment it in all subclasses:

//Effect: Add the given funds to this account
//Return the new balance
int deposit(int funds);

C. Add the method withdraw to the Abstract class Account and imple-
ment it in all subclasses:

//Effect: Withdraw the given funds from this account
//Return the new balance
int withdraw(int funds);

D. When you are writing your examples for these methods, make sure
you also include examples of classes that extend Account and how
they can utilize these methods. Hint, how does Credit differ from the
other classes that extend Account?

E. Next, let’s deal with the Customer class and the ILoA class hierarchy
that represents a list of accounts. Each customer has a name and a list
of accounts he/she holds. Complete the class definition for the class
Customer.

F. Add the method add to ILoA and implement it as needed. It should
add the given account to our list of accounts.

ILoA add(Account acct)

G. Design the method addAccount for the Customer class. It should
add the given account to the customer’s list of accounts.

2



Lab 8 c©2008 Felleisen, Proulx, Jossey, et. al.

void addAccount(Account acct)

H. Now, let’s follow the same methodology and set up the Bank class.
A Bank has a list of all accounts. We already know how to add an
account to a list of accounts. However, we also want to be able to
remove an account from a list of accounts.
Design the method removeAccount that will remove the account
with the given account id from the list of accounts.

ILoA removeAccount(int acctNo)

Hint: Throw an exception if the account is not found

I. The bank has one list of accounts for every branch. These are the
accounts created in the branch. Each branch then has additional in-
formation about its customers (in the CustomerList). The branches
share the account lists — and so the central list of lists of accounts has
one account list for each branch. If we want to make changes in the
account list of one branch, we cannot produce a new list of accounts.
To solve this problem we build a wrapper class for account lists called
AccountList. Its only data (for now) is an instance of ILoA.

Complete the definition of the class AccountList and make exam-
ples of its data.

J. Design the method that changes the AccountList by adding to it
the given account.

void addAccount(Account acct)

K. Design the method that changes the AccountList by removing from
it the account with the given account number.

void removeAccount(int acctNo)

Follow the Design Recipe!

3


