Lab 6 (©2008 Felleisen, Proulx, et. al.

6 Starting in Eclipse; Understanding Constructors

6.1 Eclipse IDE and the tester library
Goals

In the first part of this lab you will learn how to work in a commercial level
integrated development environment IDE Eclipse, using the standard Java
programming language. The environment provides an editor, allows you
to organize your work into several files that together comprise a project,
and has a compiler so you can run your programs. Several projects form a
workspace. You can probably keep all the work till the end of the semester
in one workspace, with one project for each programming problem or a lab
problem.
There are several step in the transition from Professor]:

1. Learn how to convert Professor] programs to programs that run in
Java, using the tester library.

2. Learn to set up your workspace and launch an Eclipse project.
3. Learn to manage your files and save your work.
4. Learn the basics of the use of visibility modifiers in Java.

5. Learn the basics of writing test cases using the tester library.

Professor] vs Java.

The programs you have written so far follow the specification for the full
Java language, with two exceptions:

o The test cases in Professor] use the special form check --- expect
that is not available in Java. Instead, we provide the tester library that
allows you to write the tests in a similar way. The t est er library re-
ports on the failed test cases and provides a display of all data defined
in our Exanpl es class.

e When a class implements an interface which includes method decla-
rations, every method definition in the class that implements a method]
declared in the interface must be annotated with the publ i ¢ visibil-
ity modifier.

(©2008 Felleisen, Proulx, et. al. Lab 6

We provide a simple program (written in Java) that reads your Professor]
program and produces a new version with the test cases converted to using
the t est er library in Java.

Our goal is to take a Professor] program, convert it to Java and run it
in the Eclipse IDE. We will start with a fairly complex program you al-
ready know. Download the program bookstore-methods4.java from the lec-
ture notes and save it in some temporary directory. In the instructions on
the web page use this program every time it refers to books-authors.java.

Learn to set up your workspace.

Start working on two adjacent computers, so that you can use one for look-
ing at the documentation and the other one to do the work. Find the web
page on the documentation computer:

http:/ /www.ccs.neu.edu/howto/howto-windows-n-unix-homedirs.html

and follow the instructions to log into your Windows/Unix account on
the work computer.

Next, set up a workspace folder in your home directory where you will
keep all your Java files. This should be in
z:\\...\EclipseWrkspace

Note that z: is the drive that Windows binds your UNIX home direc-
tory.

Next, set up another folder in your home directory where you will keep
all your Java library files. This should be in

z:\\...\EclipselARs

Start the Eclipse application.

DO NOT check the box that asks if you want to make this the default
workspace for eclipse

Lab 6 (©2008 Felleisen, Proulx, et. al.

On Your Own

The libraries you will need as well as the converter program are available
at a public web site at:

http:/ /www.ccs.neu.edu/javalib/

Follow the link to Conversions, and to Eclipse.

The instructions guide you through building a Converter project, the
conversion of the bookstore-methods.java Professor] program to a Java pro-
gram, and in learning how to run the new Project.

The program should run and produce output in the Console window
on the bottom. However, the window is very small. If you double-click on
any window tab in the Eclipse workspace, it will get resized to cover the
whole Eclipse pane. Double-clicking on its tab again restores it back to the
original view. Try it with the source files as well.

You see that the output is very similar to what we saw in Professor].

Learn to edit and save your work.

First, modify your file bookstore-methods4-eclipse.java adding two more ex-
amples of books to the Examples class. Run your program.

You can create an archive of your project by highlighting the project,
then choose Export then select Zip archive. Eclipse will ask you for a folder
where to place the zip file and will let you choose the name for the zip file.

Your project will remain in the Eclipse workspace, but now you have
saved a copy that will not change as you keep working.

Learn to edit the program and design the test cases.

In the class Book design the method cheaper Than that determines whether]
the sale price of the book is less than the given amount.

Add tests for the method to the Exanpl es class, following the tech-
nique already illustrated there.

Designing tests using the Tester test harness

In the Conversions page of the javalib web site click on Overview. Use it as
a guide for how to design test using the tester library. For a full coverage
of all possible types of test and the use of the tester library, follow the Tester
link from the main javalib site.

Include in your program a couple of test that you know will fail and
observe how the errors are reported.

(©2008 Felleisen, Proulx, et. al.

Lab 6

6.2 Understanding Constructors: Data Integrity; Signaling Errors

Goals

In this part of this lab you will practice the use of constructors in assuring
data integrity and providing a better interface for the user.

Designing constructors to assure integrity of data.

We start with the Dat e class we may use to check for overdue books.

/1 to represent a cal endar date
class Date {

int year;

int nonth;

int day;

Date(int year, int nonth,
this.year = year;
this.nmonth = nonth;
this.day = day;

}

}

int day){

and a simple set of examples:

cl ass Exanpl es {
Exanpl es() {}

/1 good dates
Dat e d20060928
Dat e d20071012

new Dat e(2006, 9,
new Dat e(2007, 10,

/1 bad dates
Dat e b34453323

}

new Dat e(3445, 33,

28); /'l Sept 28, 2006
12); /1 Cct 12, 2007
23);

e Create a project Dat e in the Eclipse and add a new file named Exam-
ples.java. Copy into this file the definition of the class Dat e and the

class Exanpl es.

e Import the t est er library and add the t ester. j ar to the project
as external JAR. Now run the project.

e Look at the third example of a date.

Of course, the third example is

pure nonsense. Only the year is possi-

bly valid - still not really an expected value. To validate the date com-

pletely (taking into account all

the special cases for different months,

4

Lab 6 (©2008 Felleisen, Proulx, et. al.

as well as leap years, and the change of the calendar at several times
in the history) is a project on its own. For the purposes of learning
about the use of constructors, we will only make sure that the month
is between 1 and 12, the day is between 1 and 30, and the year is
between 1000 and 2200.

¢ Did you notice the repetition in the description of the valid parts of
the date? This suggests, we start with the following methods:

— method val i dNunber that consumes a number and the low
and high bound and returns true if the number is within the
bounds (inclusive).

— methods val i dDay, val i dMont h, and val i dYear designed
in a similar manner.

Design at least one of these methods - you can finish the others at
home.

e Once you have done so, change the constructor for the class Dat e as
follows:

Date(int year, int nmonth, int day){
if (this.validYear(year))
this.year = year;
el se
throw new |11 egal Argunment Exception("lnvalid year in Date.");

if (this.validMvonth(nmonth))
this.nmonth = nont h;
el se
throw new | |1 egal Argunent Exception("Invalid nonth in Date.");

if (this.validbDay(day))
this.day = day;
el se
throw new |11 egal Argunent Exception("lnvalid day in Date.");

This example show you how you can signal errors in Java. The class
I I'l egal Argunent Excepti onisa subclass of the Runt i neExcepti on.]
Including the clause

throws new ...Exception("nessage");

(©2008 Felleisen, Proulx, et. al. Lab 6

in the code causes the program to terminate and print the specified
error message. Later we will learn how we can customize the error
reporting and also how to respond to errors without terminating the
program execution.

e Make additional examples with invalid day, invalid month, and in-
valid year. Run the program, then comment out one invalid example
at a time, to see that all checks work correctly.

Overloading constructors to provide flexibility for the user: providing
defaults.

When entering dates in the current year it is tedious to always have to enter
2008. We can make avoid the need to type in the year by providing an
additional constructor that requires the user to give only the day and month
and assumes that the year is the current year (2008 in our case).

Remembering the single point of control rule, we make sure that the new
overloaded constructor defers all of the work to the primary full construc-
tor:

Date(int nonth, int day){
t hi s(2008, nonth, day);
}

Add examples that use only the month and day to see that the construc-
tor works properly. Include examples with invalid month or year as well.
(Of course, you will have to comment them out.)

Overloading constructors to provide flexibility for the user: expanding
the options.

The user may want to enter the date in the form ”"Oct 20 2006”. To make
this possible, we can add another constructor:

Date(String nmonth, int day){
this(1, day); /1 meke an instance with a wong nonth
if (nonth. equal s("Jan"))
this.month = 1;
else if ...

el se
throw new |11 egal Argument Exception("lnvalid nmonth in Date.");

Lab 6 (©2008 Felleisen, Proulx, et. al.

To check that it works, allow the user to enter only the first three months
("Jan”, ”Feb”, and "Mar”). The rest is tedious, and in a real program would
be designed differently.

Finish the work at home and save it as a part of your portfolio.

6.3 Converting a larger program to an Eclipse project

When the program gets larger, we no longer want to keep all class defi-
nitions in one file. Typically, in Java every class or interface is defined in
its own file, though at times we may group together related classes and
interfaces.

e Create a new project Bookstore2.

e For each class or interface in the file bookstore-methods4.java create a
new file with the name of the class followed by . j ava. Make each
class and its constructor publ i ¢c. Make the interface | LoB publ i c.

e Do the necessary corrections until all errors disappear.

e Now create a new file Exanpl es. j ava and copy into if the defini-
tion of the Exanpl es class.

o Add the statement

i mport tester.*;

at the beginning and add the t est er . j ar library to the project.

e You can now run your project. Ask for help if Eclipse does not recog-
nize the project you are trying to run.

