
Lab3 c©2008 Felleisen, Proulx, et. al.

3.1 Designing Methods: Simple Classes

In this lab we will focus on designing methods for classes and class hierar-
chies of increasing complexity. Make sure you understand each part before
moving on to the next one. If you are having difficulties at any time, do ask
questions and make sure you understand how things work.

In the last lab you have defined class Restaurant that corresponds to
the following class diagram into Beginner ProfessorJ:

+--------------+
| Restaurant |
+--------------+
| String name |
| String kind |
| int avgPrice |
+--------------+

Remember the examples we have used:

• Chinese restaurant Blue Moon with average price per dinner $15

• Japanese restaurant Kaimo with average price per dinner $20

• Mexican restaurant Cordita with average price per dinner $12

1. Design the following methods for the Restaurant class.

• Method isKind that determines whether this restaurant is the
kind we are looking for (e.g. Chinese, French, etc.)

• Method cheaperThan that determines whether this restaurant
is cheaper than the given one, measured by the average price per
dinner

• Method canEat that determines whether a party of some given
number of people will be able to afford a dinner in this restau-
rant, given the total amount they are willing to spend.
(E.g. 3 people cannot eat at Blue Moon if they have only $40 to
spend.)

3.2 Designing Methods: Classes with Containment

Look at the data definition for the following class diagram that you have
defined in the previous lab:

1

c©2008 Felleisen, Proulx, et. al. Lab3

+--------------+
| Restaurant2 |
+--------------+
| String name |
| String kind |
| int avgPrice |
| CartPt loc |--+
+--------------+ |

v
+--------+
| CartPt |
+--------+
| int x |
| int y |
+--------+

1. Design the method countBlocks that computes the number of blocks
we have to walk from this restaurant to the given one. Assume that
the location represents the intersection of the numbered streets and
numbered avenues on a city map similar to the midtown Manhattan.

Note: You may need to use the Math.abs(int) method that produces the
absolute value of the given integer.

3.3 Designing Methods: Unions of Classes

In the previous lab you have designed the class hierarchy that represents
the following kinds of pets:

• cats where we record whether it is a short-hair cat of a long-hair cat

• dogs where we record the breed (e.g. Husky, Labrador, etc., or Mutt
— describing an unknown breed)

• gerbils where we need to know whether it is a male of female

still keeping track of the name of the animal and of its owner.

1. Design the method isOwner that determines whether this animal’s
owner has the given name.

2. Design the method sameName that determines whether two pets have
the same name.

2

Lab3 c©2008 Felleisen, Proulx, et. al.

3.4 Designing Methods: Self-Referential Class Hierarchies

We will work with a list of restaurants. The code in the file restaurant-
list.java defines the class hierarchy represented by the following class dia-
gram:

+------+
| ILoR |<--------------+
+------+ |
/ \

-------------------- |
| | |

+-------+ +------------------+ |
| MtLoR | | ConsLoR | |
+-------+ +------------------+ |
+-------+ +-| Restaurant first | |

| | ILoR rest |--+
| +------------------+
v

+--------------+
| Restaurant |
+--------------+
| String name |
| String kind |
| int avgPrice |
+--------------+

1. Design the method count that counts the number of restaurants in a
list of restaurants.

2. Design the method averageDinner that computes the average of
the average prices for all restaurants in a list of restaurants. For the
rlist3 in the file restaurant-list.java the method should produce
$14.

3. Design the method cheapList that produces a list of all restaurants
that have the average dinner price below the given limit.

4. Design the method sort that produces a list of all restaurants sorted
by their average dinner prices.

3

