Lab 12 (©2008 Felleisen, Proulx, et. al.

12 User Interactions

Goals

In this lab you will learn a little about programming user interactions using
the Model-View-Control pattern for organizing the responsibilities.

The JPT library allows you to concentrate on the key concepts and avoid
the pitfalls of multitude of details, typically associated with GUI program-
ming.

The Model and the View

The diagram below (on the next page) describes the classes already in-
cluded in this application:
Here is a brief description of the role these files play in the application.

The model

The program deals with balloons (for now just three of them).

e cl ass Bal | oon This class represents one balloon object, allows the
user to move it, paint it, and to compare two balloons for closeness to
the top of the graphics window.

We could have other classes here, such as a list of balloons, or a list of
tied-up balloons and a list of floating balloons, etc.

The views

We can view the information about a particular Bal | oon object in several
different ways. The Bal | oonl nput interface provides two methods for
getting the data needed to construct an instance of a new Bal | oon.

To display the information about a Bal | oon object, we can print a
St ring that represents the Bal | oon object in the console, or paint it in
the given window, or display the values of its fields in a GUL

To get the data from the user that is needed to instantiate a new
Bal | oon we can read from the console, or from a GUI

(©2008 Felleisen, Proulx, et. al.

Lab 12

| Balloon requestBalloon() |
| throws Cancel | edException |

e e e +
| Ball oonContr ol |
B T TP +
+--| Bal | oonl nput Vi ew bVi ew |
| | Balloon b |---mmmm-- +
| | BufferredPanel w ndow |---+ |
| | JPTCanvas theCanvas |-+ |
| | SinpleAction paintAction | | | v
| | SinpleAction newAction |]| 4meeemememees
| | SinpleAction cancel Action | | | | Balloon
| e + | | R ———
| | void paintAction() | || | int x
| | void paintAction() ||| | inty
| | void cancel Action() | || | int radius |
| e +| | | Color ¢
| [+ | Fommmm e e
| \ Y
| B T e
| | JPTCanvas | | BufferedPanel
| B T L R ST
| | BufferredPanel wi ndow |
| L T +
|
| B e +
| | interface: Balloonlnput |
| B +
| | Balloon demandBal | oon() |
|
|
| B +
| I\
| |
| R -+
| | I
| A + e
| | GU Balloonlnput | | Consol eBal | oonl nput
| A + o
| | BalloonlnputView bGU |[--+ +-------ommnmonmnoaan-
| R e + | e
| | | Display |
| | LEEREREEEE
e + | \
| | -
\ v
e +
| Bal | oonl nput Vi ew |
U +
| TextFieldview XxTFV |
| TextFieldview yTFV |
| SliderView rSlider |
| Col or Vi ew cVieW |
B T L T +
| Tabl ePanel createDisplay() |
e e +

Lab 12 (©2008 Felleisen, Proulx, et. al.

i nterface Bal |l oonl nput contains two methods:
demandBal | oon() and request Bal | oon() that allow us to in-
stantiate a Bal | oon object from the source that implements the meth-
ods.

cl ass Consol eBal | oonl nput implements the Bal | oonl nput
interface used for reading the input from the console.

cl ass Bal | oonl nput Vi ewdefines a GUI to request the user input
for the data needed to initialize one Bal | oon instance. It contains
two Text Fi el dVi ews, one Sl i der Vi ew, and one Col or Vi ew. It
also allows us to display the data that represents an instance of a
Bal | oon.

cl ass QU Bal | oonl nput implements the Bal | oonl nput inter-
face for extracting the user input from the Bal | oonl nput Vi ewGUL

The control

cl ass Bal | oonContr ol adds to the GUI Act i ons. These are but-
tons that allow the user to choose an action, such as read the Bal | oon
data from a GUI and display the Bal | oon in the given canvas. (Our
canvas is a window — a buffered panel.)

Run the code, and note the behavior in response to the various buttons.

Getting Familiar with the Environment

1.

The model

Read the code for the cl ass Balloon. Add the method
eraseBal | oon which will paint the balloon in a white color
(Col or . whi t e). Make sure you have the examples and tests for this
method.

The console input

Read the code for the method runConsol el nput in the
cl ass Interactions. Describe to your partner what the method
does. Look at the Consol eBal | oonl nput class and see how the
methods demandBal | oon and r equest Bal | oon are implemented.
Run the code and see what happens if you type in a wrong data, or
when you do not provide any input.

3

(©2008 Felleisen, Proulx, et. al. Lab 12

3. The actions

Find the code for the action for the New button. Currently, it only sets
the value of the Bal | oon instance variables. Add to this action a call
to the method which paints the balloon, from the cl ass Bal | oon.
Make sure it works.

4. Text input from a GUI

Find all places where the X TFV is defined or used. It is constructed in
the class Bal | oonl nput Vi ew. This class also defines the methods
demandBal | oon and r equest Bal | oon, each of them produces a
new instance of a Balloon from the user inputs.

In the class Bal | oonCont r ol user input to the Bal | oonVi ew ini-
tializes the value of a Bal | oon object that represents our model. We
could add to our model a list of tied balloons and a list of floating
balloons, and more - for example a child holding the balloon.

DO IT Using a similar technique, define a new Text Fi el dVi ew
named r TFV, to represent the numerical value of the Bal | oonr adi us.]

5. Connecting slider with a text field

Test the behavior of the slider. Does it have any effect on the bal-
loon? Does it have any effect on the value displayed in the r TFV
tield? Change the value of the r TFV field. Does it affect the slider?
Does it affect the balloon?

The two views represent the same value and so should be designed
to mimic each other. The slider has to act by changing its position
whenever a new value is typed into the text field. The value in the
text field has to change when the slider is moved, so it reflects its
current position.

Define two new Si npl eAct i ons and the corresponding methods —
anr TFVactionand a Sl i der Acti on. It does not matter what you
choose for the label, because we are not going to use the actions with
a button.

The first one voi d r TFVact i on will be invoked when the value in
the field r TFV changes. It should then set the value of the balloon
radi us and the value of the r Sl i der to the value displayed in the
r TFV. To set the state of the r Sl i der use the method

rSlider.setViewState("" + b.radius);

4

Lab 12 (©2008 Felleisen, Proulx, et. al.

The second method voi d r Sl i der Acti on() will beinvoked every
time the location of the slider (and the value it represents) changes. It
must then change the r adi us of the balloon and set the view state of
the r TFV calling the method set Vi ewSt at e in a manner similar to
the above. If you run the program now, you may be surprised to see
that these changes have no effect. Can you think of the way to test
that the methods work correctly?

6. Listening to changes in the values

Now you have to tell the r Sl i der and the r TFV to perform this ac-
tion when their values change. The following two statements have to
be added at the end of the method voi d creat eVi ews():

r TFV. addAct i onLi st ener (r TFVacti on);
rSlider.addSlidi ngAction(sliderAction);

The first one tells the r TFV to perform the r TFVact i on whenever
its value changes. The second one tells the r Sl i der to perform the
sl i der Acti on whenever the position of the slider (and thus the
value it represents) changes.

Test that this works.

7. Reporting changes in the model to the view

Now that you have seen the method set Vi ewSt at e, add such
method to the cl ass Bal | oonl nput Vi ew. To see that is works, we
need to modify some of the fields of a Bal | oon instance and invoke
the method. Try it.

8. Adding mouse actions

In the last part you will control the balloon with the mouse. You need
to define what should happen when the mouse is clicked (or dragged,
or released, etc.). You need to specify which GUI component should
listen to the mouse and the user mouse actions. You then need to
connect the MouselLi st ener with the action it should trigger.

Build a separate frame

The first thing you need to do is to change the manner in which the
GUI s displayed. Look at the codein the cl ass | nt eracti ons for
the method runBal | oonControl (). Replace the line which calls
the method showOKDi al og with the following:

5

(©2008 Felleisen, Proulx, et. al. Lab 12

JPTFrane. creat eQui ckJPTFranme("Bal | oon Control", bc);

This places the BalloonControl into a window that runs in its own
thread, i.e. independently of the rest of the application. That allows
the rest of the application to watch out for the mouse movement and
clicks inside of the graphics window.

Define a mouse action The first mouse action you will build will
increase the radius of the balloon by ten, every time you click the
mouse. All of this is in the cl ass Bal | oonCont r ol . Start by defin-
ing the method

protected click(MuseEvent mevt) which does the following:|

e Print into the console a message that the mouse was clicked.
e Erase the balloon
e Increase the balloon radius by 10

e Set the view state of the Bal | oonl nput Vi ew bVi ewto the cur-
rent values of the balloon. (Only the radius has changed, but it
is easier to let the Bal | oonVi ew do the whole job by invoking
the method set Vi ewSt at e.

e Finally, paint the changed balloon.

9. Defining and installing Mouse action adapter
Install a MouseAct i onAdapt er for the Buf f er edPanel as follows:
e After the definition of the Buf f er edPanel , add the definition:

public MuseActi onAdapt er nouseAdapter;

e Inside of the constructor for the cl ass Bal | oonCont r ol first
initialize the mouseAdapt er as follows:

nmouseAdapt er = w ndow. get MouseAct i onAdapt er () ;
¢ Add the action to perform when the mouse is clicked as follows:

/1 respond to nmouse clicks
nmouseAdapt er . addMouseC i ckedAct i on(
new MouseAction() {
public void nouseActi onPerformed(MouseEvent nevt) {1
click(mevt);

}
});

Lab 12 (©2008 Felleisen, Proulx, et. al.

At this point you should test that your program runs as you ex-
pected.

10. Tracking the mouse movement

Finally, you will make the balloon move when the mouse moves. Do
all the steps you have done for the clicked action, but do not get a
new nouseAdapt er . The following code will add the action:

/] track nouse notions
nouseAdapt er . addMbuseMovedAct i on(
new MouseAction() {
public void nmouseActi onPerformed(MouseEvent nevt) {
track(nmevt);

}
1)
Inside of the t r ack method get the coordinates of the mouse as fol-
lows:
b.x = mevt.get X();
b.y = mevt.getY();

and see what your program does. (Probably nothing - you still have
to erase the old balloon, before you make the changes, paint the new
balloon, and as a courtesy, set the view state for the view.) Now you
should have fun.

