
Lab 10 c©2008 Felleisen, Proulx, et. al.

10 Javadocs, Testing Exception Use
Mutating ArrayList, Loops

Goals

The first part of the lab you will learn how to generate Javadoc documen-
tation, how to test whether the program throws a correct exception with a
correct message, and practice reading Javadoc style documentation for pro-
grams.

The second part introduces ArrayList class from the Java Collec-
tions Framework library, lets you practice designing methods that mutate
ArrayList objects. We will continue to use the generics (type parame-
ters), but will do so by example, rather than through explanation of the
specific details.

In the third part of the lab you will learn how to how to convert re-
cursive loops to imperative (mutating) loops using either the Java while
statement of the Java for statements to implement the imperative loops.

10.1 Documentation, Testing Exceptions, Java Libraries

For this lab download the files in Lab10-Fl2008.zip. The folder contains the
following files:

• The file Balloon.java — out sample data class

• The file ISelect.java— the interface for a generic predicate method

• The files RedBallon and SmallBalloon that implement the
ISelect interface for the Balloon data.

• The files IList.java, MTList.java, and ConsList.java that
define a generic cons-list that implements the Traversal interface.

• The file ArrListTraversal.java shows how we can define a
Traversal wrapper for the ArrayList class.

• The file TopThree.java will be used to practice working with
ArrayList in imperative style (using mutation).

• The Algorithms.java file shows an implementation of several al-
gorithms that consume data generated by a Traversal iterator and
illustrates a number of ways in which loops can be implemented in
Java.

1

c©2008 Felleisen, Proulx, et. al. Lab 10

• The Examples.java file that defines examples of all data and defines all
tests.

Create a new Project Lab10 and import into it all files from the zip file.
Import the tester.jar and colors.jar.

Generating Documentation

• Once Eclipse shows you that there are no errors in your files select
Generate Javadoc... from the Project pull-down menu. Select to gen-
erate docs for all files in your project with the destination Lab10/doc
directory. Make sure you select all files for which you wish to gener-
ate the documentation.

You should be able to open the index.html file in the Lab10/doc direc-
tory and see the documentation for this project. Compare the docu-
mentation for the class ConsList with the web pages. You see that
all comments from the source file have been converted to the web
document.

Observe the format of the comments, especially the /** at the begin-
ning of the comment. If you do not understand the rules, ask the TA
or one of the tutors, or experiment with new comments. From now on
all of your work should have a proper Javadoc style documentation.

• Now use the documentation to see what are the fields in various
classes and what methods have been defined already.

• The handout shows you the relationship between all these classes and
interfaces.

• Define a method isHit in the class Balloon that determines whether
a shot aimed at the given x and y coordinate hits this Balloon. Add
documentation in the Javadoc style. Of course, add tests in the
Examples class. Run the tests, then rebuild the Javadocs and make
sure your documentation shows up correctly.

Defining and Handling Exceptions

• The files IList.java, MTList.java, and ConsList.java illus-
trate how methods can throw exceptions when something goes wrong.

2

Lab 10 c©2008 Felleisen, Proulx, et. al.

The method contains in the class Algorithms illustrates how the
contains method handles the exceptions that may be thrown when
invoking one of the Traversal methods.

Can you construct an example for the method contains in the
Examples class that will cause the exception to be thrown?

• The tester allows the programmer to test whether a method invo-
cation by a given instance with the given list of arguments throws the
expected exception and produces the expected message.

The test case header is:

checkExpect (T object,
java.lang.String method,
java.lang.Object[] args,
java.lang.Exception e)

and a sample of its use is:

// invoke getFirst() on the instance of MTList
// should throw IllegalUseOfTraversalException
// and produce a message "No first element in an empty list"
public void testExceptions(Tester t){

t.checkExpect(new MTList<Object>(),
"getFirst",
new Object[0],
new IllegalUseOfTraversalException(

"No first element in an empty list"));
}

Add to the Examples this test and add one more test that will make
sure that the method getRestwhen invoked on an instance of MTList
also throws an exception. See what happens when you provide an
incorrect Exception class or an incorrect message in your test case.
See what happens when the method does not throw any expected
exception.

ArrayList and Java Libraries

• The class TopThree now stores the values of the three elements in an
ArrayList. Complete the definition of the reorder method. Use
the previous two parts as a model. Look up the documentation for
the Java class ArrayList to understand what methods you can use.

Do not forget to run your tests.

3

c©2008 Felleisen, Proulx, et. al. Lab 10

10.2 Using ArrayLists and Traversals

Using ArrayList with Mutation

In this part of the lab we will work on lists of balloons.
Open the web site that shows the documentation for Java libraries

http://java.sun.com/j2se/1.5.0/docs/api/.

Find the documentation for ArrayList.
Here are some of the methods defined in the class ArrayList:

// how many items are in the collection
int size();

// add the given object of the type E at the end of this collection
// false if no space is available
boolean add(E obj);

// return the object of the type E at the given index
E get(int index);

// replace the object of the type E at the given index
// with the given element
// produce the element that was at the given index before this change
E set(int index, E obj);

Other methods of this class are isEmpty (checks whether we have
added any elements to the ArrayList), contains (checks if a given ele-
ment exists in the ArrayList — using the equals method), set (mutate
the element of the list at a specific position). Notice that, in order to use an
ArrayList, we have to add

import java.util.ArrayList;

at the beginning of our class file.
The methods you design here should be added to the Examples class,

together with all the necessary tests.

• Design the method that determines whether the radius of the balloon
at the given position in the given ArrayList of Balloons is smaller
than the given limit.

• Design the method that determines whether the balloon at the given
position in the given ArrayList of Balloons has the same size and
location as the given Balloon.

4

Lab 10 c©2008 Felleisen, Proulx, et. al.

• Design the method that increases the radius of a Balloon at the
given index by 5.

• Design the method that swaps the elements of the given ArrayList
at the two given positions.

10.3 Converting Recursive Loops into Imperative while Loops

• Work with the Lab handout. The first page gives you an overview
of all classes and interfaces (except the TopThree) and the relation-
ship between them. We introduce a dotted line from a method that
consumes an instance of some class to that class.

• Read first the code for the containsmethod and for the countSuch
method in the Algorithms class. These have been designed in the
classical HtDP style.

• We will look together at the next two examples of orMap in the
Algorithms class.

We first write down the template for the case we already know — the
one where the loop uses the Traversal iterator. As we have done
in class, we start by converting the recursive method into a form that
uses the accumulator to keep track of the knowledge we already have,
and passes that information to the next recursive invocation.

Read carefully the Template Analysis and make sure you understand
the meaning of all parts.

5

c©2008 Felleisen, Proulx, et. al. Lab 10

TEMPLATE - ANALYSIS:

return-type method-name(Traversal tr){

+--------------------+
// invoke the methodAcc: | acc <-- BASE-VALUE |

+--------------------+
method-name-acc(Traversal tr, BASE-VALUE);

}

return-type method-name-acc(Traversal tr, return-type acc)
... tr.isEmpty() ... -- boolean ::PREDICATE
if true:
... acc -- return-type ::BASE-VALUE
if false:

+---------------+
...| tr.getFirst() | ... -- E ::CURRENT

+---------------+

... update(T, return-type) -- return-type ::UPDATE
+----------------------------+

i.e.: ...| update(tr.getFirst(), acc) | ...
+----------------------------+

+--------------+
... | tr.getRest() | -- Traversal<T> ::ADVANCE

+--------------+

... method-name(tr.getRest(), return-type) -- return-type
i.e.: ... method-name-acc(tr.getRest(), update(tr.getFirst(), acc))

Based on this analysis, we can now design a template for the entire problem — with the solution
divided into three methods as follows:

COMPLETE METHOD TEMPLATE:

<T> return-type method-name(Traversal<T> tr){

+------------+
method-name-acc(Traversal tr,| BASE-VALUE |);

+------------+
}

<T> return-type method-name(Traversal<T> tr, return-type acc){
+--------------+

if (| tr.isEmpty() |)
+--------------+

return acc;
else

+--------------+
return method-name-acc(| tr.getRest() |,

+--------------+
+----------------------------+
| update(tr.getFirst(), acc) |);
+----------------------------+

}

<T> return-type update(T t, return-type acc){ ...
}

6

Lab 10 c©2008 Felleisen, Proulx, et. al.

Task 3:

• Look at the first two variants of the orMap method (the recursively
defined variant and the variant that uses the while loop. Identify the
four parts (BASE-VALUE, Termination/Continuation PREDICATE,
UPDATE, and ADVANCE) in each of them.

Look also at the tests in the Examples class.

• After you understand how the while loop works, design two vari-
ants of the method that produces a new ArrayList that contains all
elements of the original list that satisfy the given ISelect predicate.

Test the methods by producing all red balloons or all small balloons.

• Design and test two variants of the andMap method that determines
whether all elements of a given list satisfy the given ISelect predi-
cate.

Test the methods by checking whether a list contains all red balloons
or all small balloons.

Converting while loops into for loops

If you have the time left, repeat all the parts of Task 3 with the remaining
two variants of the orMap — namely the one that uses the for loop with
the Traversal and the one that uses counted for loop.

7

