
Exercise Set 4 c©2008 Felleisen, Proulx, et. al.

4 Designing Methods for Complex Class Hierarchies

Portfolio Problems

Work out as complete programs the following exercises from the textbook.
You need not work out all the methods, but make sure you stop only when
you see that you really understand the design process.

Problems:

1. Problem 15.8 on page 175

2. Problem 15.11 on page 176

Pair Programming Assignment

4.1 Problem

This problem continues the work on mobiles we have started during the
lectures. The file mobile-methods-lecture.java contains the data defini-
tions, examples of data, and the method totalWeight we have designed
in class.

A. Design the method totalLength that computes the length (or actu-
ally the height) of the mobile when it hangs. Be careful. Just adding
up all the lengths of the strings will not work.

B. Design the method isBalanced that determines whether the mobile
is properly balanced. For each strut (the bar on which the two other
mobiles hang) you must make sure that the weight hanging off the
strut multiplied by its length is the same as the weight hanging on
the opposite side - multiplied by the length of its strut. If you do not
understand what this means, make a simple toy mobile and play with
it, to see what it takes to make it balanced.

Make sure you design several examples of mobiles that are not bal-
anced.

C. Design the method draw() that consumes a Canvas and a Posn that
represents the point where the top of the mobile will hang. The meth-
ods draws the mobile with black lines for the struts, and for the hang-
ing lines. For a simple mobile, at the end of the line there should be

1



c©2008 Felleisen, Proulx, et. al. Exercise Set4

disk of the appropriate color and with the size proportionate to its
weight shown at the end of the line.

4.2 Problem

You are trying to organize the file directories on your computer. Your
friend gave you a start by designing the data definitions given in the files-
directories.java file. She even gave you some examples of data.

A. Make an additional example(s) of data that allows us to represent the
following directory and its contents:

Directory Pages
contains the following: file index.html

file pictures.html
directory Pictures
directory Quotations

Directory Pictures
conatains the files: home.jpeg,

friend.jpeg.
brother.jpeg

Directory Quotations contains files: twain.txt,
cervantes.txt

Choose any sizes for these files. Assume the sizes are given in kilo-
Bytes.

B. Design the method totalSize that computes the size of the direc-
tory by adding the sizes of all files in it. Additionally, every directory
needs 4 kiloBytes for keeping track of its list of files and subdirecto-
ries.

C. Design the method allFiles that produces a list of all files of the
given kind in the directory (and all of its subdirectories).

Note: You must include the templates for all classes in this problem,
except the interfaces and classes that represent empty lists.

Note: Use helper method where appropriate.

2



Exercise Set 4 c©2008 Felleisen, Proulx, et. al.

4.3 Problem

We are given two soretd files and would like to combine them into one file.
For simplicity we will deal with just files of Strings. The String class
defines the fillowing method for comparing two Strings:

// compare this String to the given in lexicographical order
// produce an int < 0 if the this String is before the given
// produce 0 if this String is equal to the given
// produce an int > 0 if the this String isafter the given

A. Design the method isSorted that determines whether this list of
Strings is sorted lexicographically.

B. Design the method merge that is invoked by a sorted list of Strings,
consumes another sorted list of Strings, and produces a new list of
Strings that contains all items from both lists in a sorted order.

Note: You must include the templates for all classes in this problem,
except the interfaces and classes that represent empty lists.

Note: Use helper method where appropriate.

4.4 Problem

Creative Project
This week you will complete the game project.

A. All that is left for you to do is to design the method that determine
when the world ends and to run the game.

Note: Take the time to make the code look good, be readable, well tested;
make the game display a bit nicer.

When you are ready to run the game do the following:

• Change the line that defines you GameWorld class to be:

class GameWorld extends World{

Of course, you will use whatever is the name of your class that defines
your world. If you have named it just World, you need to change its
name to something different.

3



c©2008 Felleisen, Proulx, et. al. Exercise Set4

• Change the language level to Intermediate ProfessorJ.

• Include on your Examples class the method

boolean go(){
return this.myInitialWorld.bigBang(200, 300, 0.1);

}

— assuming you have defined myInitialWorld in the Examples
class, want your Canvas to be 200 pixels wide and 300 pixels tall,
and want the clok tick at every 0.1 second. Of course, you choose
your own names, sizes, and the speed.

• Run the program, then in the Interactions window type the follow-
ing:

> Examples e = new Examples();
> e.go()

• Have fun.

4


