
Exercise Set 11 c©2008 Felleisen, Proulx, et. al.

11 Finding Your Way.

Introduction

The goal of this assignment is to introduce you to the design of larger pro-
grams using the Model-View-Controller design pattern. The model for
your program is designed to find a path between two nodes of a graph.
The view can be display of the path in the Canvas or a description of the
path in a text form in the console, or even an animation of the path search
process. We give you fairly detailed specifications for the model part of the
program. The requirements for the view are minimal. They only describe
the basic functionality — you are free to enhance your presentation as you
wish — and will be given credit for the work.

One part of the credit for this assignment will be given for a design
document that describes the data, the organization of the program, the key
program components, and the design of tests. Imagine you want someone
to keep improving your program — provide a road map that explains what
your program does and how does it do it. This document should comple-
ment the Javadoc generated web pages. A separate document will give you
a more detailed guidelines for what we expect.

One part of the credit for this assignment is for the model part.

You will also get credit is for the user interactions (view) — grading
both the design of the user views and the design of the program that drives
it. A small bonus may be earned for exceptionally well designed display
or interactions. It is better if the user interaction is done only through the
console, but is well designed and documented, than if a fancy GUI dis-
play is driven by a code that another programmer cannot understand and
maintain.

11.1 Project Presentation

You will present your project (both partners together) during the regular
lecture time on Monday, December 8th or on Wednesday, December 10th.
Each partner should be able to describe any part of the code in the project,
regardless of who wrote it, as we expect that both partners work on the
project together. More information about the presentations is provided in a
separate document.

1



c©2008 Felleisen, Proulx, et. al. Exercise Set 11

The Model

Graph

Your program needs to represent a graph with nodes that represent capitals
of the 48 US states. Each node has a name — the name of the state. For
each node, record the information about the capital of that state. Each edge
represents a bi-directional connection between two adjacent states. You
may consider the four corner states: Colorado Utah, Arizona and New Mexico as
connected to each other. Each edge has a value that represents the distance
between the capitals of the two states. The distances between two cities
are based on the geographic distance. (See a separate announcement for a
shortcut you can use to compute this distance.)

Algorithms

Your model should implement two graph traversal algorithms:

• Depth-First Search: uses a Stack to record the ToDo information

• Breadth-First Search: uses a Queue to record the ToDo information

The detailed description of the algorithm appears in a separate doc-
ument. You will encounter a significant penalty for repeating the code
- one algorithm implementation should run both variants, distinguishing
between them by selecting the appropriate implementation of a common
interface for dealing with the ToDo information.

Using Libraries

Furthermore, throughout the project you are encouraged to leverage as
much as possible from the existing Java libraries (both the Java Collections
Framework, and the JPT libraries). The designer should focus on the design
of interfaces between tasks, between components, wrapper and adopter
class that allow you to use an existing library class in a customized setting.

The View

The requirements

The view at the minimum should have the following functionality:

2



Exercise Set 11 c©2008 Felleisen, Proulx, et. al.

• User should be able to see a representation of the graph.

This can be a graphical display, a text that lists the nodes and the
edges (with their weights), a graphical display of the text that lists
the nodes and the edges.

• User should be able to select which of the three algorithms is to be
used for the subsequent task.

• User should be able to specify the origin and the destination of the
desired path.

• The user should be able to see the resulting path.

Again, this may be a graphical display, or just a text listing the nodes
along the path.

The frills

Of course, the view can be much more elaborate. Here is a list of possible
enhancements:

• Highlight the path is a different color in the graphics display.

• Display the steps in the search by highlighting in a different color
the visited nodes, the f ringe nodes (those currently in the queue or
the stack), the origin, the target, and the unseen nodes. Animate the
process using either the timer, or a user advance triggered by a key
press.

• Animate the reconstruction of the path by traversing from the found
target back to the previous node, all the way up to the origin.

• Select the origin and the target in a graphics display using a mouse.

• Display in a GUI the path length and possibly the nodes along the
path.

• Choose the algorithm through a GUI.

• Make the graphics look like a game — e.g. traversing a street map or
a maze.

3



c©2008 Felleisen, Proulx, et. al. Exercise Set 11

11.2 The Advice

The design part of each project typically takes the greatest amount of time.
the more time you spend thinking things through, the easier it is to actually
write the code.

Make sure you think the whole framework through before you start
programming. Spend some time researching the Java libraries to see what
tasks can be done using the existing tools. Write sample adapters to see
how the existing class can be used in your setting.

Then design the key component by specifying their interfaces — the
method headers, the interfaces that various classes must implement or use
to get information from others.

For now, you have not learned about various tools and techniques to
support such design process — other than class diagrams. Any descrip-
tion that you find helpful in clarifying the roles of the different classes and
interfaces in your program is acceptable.

The design document you produce should include a brief user’s guide,
give a general overview of the project organization as well as describe all
data definitions and the key methods. The Javadocs supplement this with
detailed information about the actual implementation.
Enjoy

4


