
Exercise Set 10 c©2008 Felleisen, Proulx, et. al.

10 Assignment

Portfolio Problems: Loops

Finish the third part of Lab 10 that deals with loops.

10.1 Eliza

Our goal is to train our computer to be a mock psychiatrist, carrying on a
conversation with a patient. The patient (the user) asks a series of ques-
tions. The computer-psychiatrist replies to each question as follows. If the
question starts with one of the following (key)words: Why, Who, How,
Where, When, and What, the computer selects one of the three (or more)
possible answers appropriate for that question. If the first word is none of
these words the computer replies ’I do not know’ or something like that.

1. Start by designing the class Reply that holds a keyword for a ques-
tion, and an ArrayList of answers to a the question that starts with
this keyword.

2. Design the method randomAnswer for the class Reply that pro-
duces one of the possible answers each time it is invoked. Make sure
it works fine even if you add new answers to your database later.
Make at least three answers to each question.

3. Design the class Eliza that contains an ArrayList of Replys.

4. In the class Eliza design the helper method firstWord that con-
sumes a String and produces the first word in the String.

The following code reads the next input line from the user. You will
need to find out what was the first word in the patient’s question.
Look up the documentation for the String class (and we gently hint
that the methods trim, toLowerCase, and startsWith may be
relevant).

System.out.println("Type in a question: ");
s = input.nextLine();

Make sure your program works if the user uses all uppercase letters,
all lower case letter, mixes them up, etc.

1

c©2008 Felleisen, Proulx, et. al. Exercise Set10

5. In the class Eliza design the method answerQuestion that con-
sumes the question String and produces the (random) answer. If
the first word of the question does not match any of the replies, pro-
duce an answer Don’t ask me that. — or something similar. If no first
word exists, i.e., the user either did not type any letters, or just hit the
return, throw an EndOfSessionException.

Of course, you need to define the
EndOfSessionException class.

6. In the Interactions class design the method that repeats asking
questions and providing answers until it catches the
EndOfSessionException — at which time it ends the game.

10.2 Selection Sort

Selection Sort algorithms works as follows. When the program traverses
the list of data for the first time, it finds the location of the smallest item in
the list. It then swaps the first item in the list with the smallest one (even if
the smallest one is already in the first spot).

Next time around, it does the same, but only with the rest of the list, i.e.
all items beyond the first one. The third time around, it starts with the third
item, because the first two are already in the correct places.

This is hard to do with the recursively constructed lists, but is much
easier when we can directly swap two items at specific locations, as is the
case when the data is stored in an ArrayList.

In the Algorithms class design a method SelectionSort that con-
sumes an ArrayList<T> and an instance of a class that implements
Comparator<T> and mutates the ArrayList<T> so that it is sorted in
the order given by the Comparator<T>.

It is possible to combine all parts of the algorithm into one method, but
we do not want you to design programs that way. Your program should
use the following helper methods:

• swap that swaps in the given ArrayList<T> the elements at the two
given locations.

• findMinLoc finds in the given ArrayList<T> the location of the
minimum element among all elements at the location greater than or
equal to the given location. Of course, it also consumes the
Comparator<T>.

2

Exercise Set 10 c©2008 Felleisen, Proulx, et. al.

• the main method, selectionSort the implements the algorithm
that is described at the beginning.

Variants

You should hand in two different implementation of this algorithm as fol-
lows:

You can choose to use any of the loops we have seen (including the
Traversal<T>, and its implementation for ArrayList<T>. However,
you should then convert your solutions for minLoc and selectionSort
to use either while loop without the Traversal<T> or for loop without
the Traversal<T> and hand in both solutions.

If your first solution already used one of these loops (while or for),
your second solution should then use the other loop.

Rename your methods as minLocV1 and selectionSortV1.

Tests

Of course, you need to test your methods. Make a simple class of data,
such as a Book or Balloon we have used in the past — but come up
with something different — and define two different Comparators for this
class. Then make examples of lists of these data items and make sure your
tests use both of the Comparators.

Organize youre tests so that the reader can readily see what is the pur-
pose of each test and what data is used in computing the result and in
providing the expected value.

10.3 Stacks and Queues

The goal of this exercise is to use the Java libraries to do the work for us.

1. In looking for a path from one city to another we keep track of the
visited cities. For each city we visit, we remember not only the in-
formation about that city, but also what city did we come from as we
traveled to the newly visited city.

Use the HashMap to keep track of the visited cities. Use the visited
city as the Key and the city of origin as the Value. So, for example,
we may have the following information about cities and traveling be-
tween them:

3

c©2008 Felleisen, Proulx, et. al. Exercise Set10

Boston, MA - visited first: came from ’null’
Albany, NY - we came from Boston, MA
Concord, NH - we came from Boston, MA
Montpellier, VT - we came from Concord, NH
Trenton, NJ - we came from NY
Harrisburg, PA - we came from Trenton, NJ

Define the class Path that records this information about the City
data used in the Lab 11. Use HashMap from the Java Collections
Framework. Make sure you include the above example in your tests
- getting all the information about for these cities by reading the file
caps.txt that has the data for the capitals of the 48 congruent US
states. Use the file InFileCityTraversal to read in the file - save
the data to an ArrayList.

2. Define in the class Path the method pathTo that produces an
ArrayList of City-s we need to go through to get to the given
City. So, for the above example, we would expect the following
results:

pathTo(Boston, MA) --> [Boston, MA]
pathTo(Albany, NY) --> [Boston, MA; Albany, NY]
pathTo(Harrisburg, PA) --> [Boston, MA;

Albany, NY;
Trenton, NJ;
Harrisburg, PA]

3. Define in the class Path the method contains that determines whether
the given City is in this Path.

4. Define the method directionsFromTo that consumes the city of
origin and our desired destination and produces the travel directions
as a String. For example,

directionsFromTo(Boston, MA : Boston, MA) produces:
"Start in Boston, MA
End in Boston, MA"

directionsFromTo(Boston, MA : Harrisburg, PA) produces:
"Start in Boston, MA
Boston, MA to Albany, NY
Albany, NY to Trenton, NJ
Trenton, NJ to Harrisburg, PA
End in Harrisburg, PA"

4

Exercise Set 10 c©2008 Felleisen, Proulx, et. al.

We now want to keep track of the neighbors of the cities we visited
(and we plan to visit soon) (the ToDo checklist). So, for example, if
we visit Boston, MA, we will add to the ToDo checklist all of its
neighbors. However, there are some restrictions. We do not add a
neighbor to the checklist if it is already in the Path.

The interface ToDo describes the desired behavior:

interface ToDo{
// add a new neighbor to the ToDo checklist
// unless it already appears in the given Path
public void add(City city, Path path);

// remove the given city from the ToDo checklist
// return false if the city is not in the checklist
public boolean remove(City city);
}

5. Define the class ToDoStack that keeps track of the neighbors to visit
soon that uses the Java Stack class to implement the ToDo interface
as a stack.

6. Define the class ToDoQueue that keeps track of the neighbors to visit
soon that uses the Java LinkedList class to implement the ToDo
interface as a queue.

5

