
Lab 9 c©2007 Felleisen, Proulx, et. al.

9 Javadocs, Raising Exceptions
Traversals, Mutating ArrayList

Goals

The first part of the lab introduces a several new ideas:

• Documenting programs in the Javadoc style.

• Generating documentation web pages from a properly documented
project.

• Defining and using Java Exceptions.

• Defining and using functional iterators (Traversals).

• Using classes from Java Libraries.

The second part introduces ArrayList class from the Java Collections
Framework library, lets you practice designing methods that mutate Ar-
rayList objects. We will continue to use the generics (type parameters), but
will do so by example, rather than through explanation of the specific de-
tails.

In the third part of the lab you will learn how to how to convert re-
cursive loops to imperative (mutating) loops using either the Java while
statement ot the Java for statements to implement the imperative loops.

Lab Materials

Start the lab by downloading the files in Lab9-fl2007.zip. The folder contains
two folders named sources and interfaces. The folder sources contains the
following files:

• Album.java that defines a class of music albums

• BeforeYear.java that implements the ISelect interface in a method that
determines whether the given Album was released before the given
year

• AlbumListTraversal.java that defines enables us to access an ArrayList
of Album data through the Traversal interface

1

c©2007 Felleisen, Proulx, et. al. Lab 9

• Algorithms.java that defines several Traversal-based algorithms for a
general use.

• Examples.java that contains our examples of data and the tests for all
defined methods.

The folder interfaces groups together in the interfaces package all inter-
faces that we will use over several different projects. That means, that later,
once we understand how these interfaces are designed, we can distribute
them as a pre-compiled compressed jar file, just like we distribute the test
harness.

It consists of the following four files:

• Traversal.java that defines the Traversal interface

• IllegalUseOfTraversal.java illustrates the definition of an Exception class

• ISelect.java the interface we have been using to define a predicate for
the given object

• ISame.java that allows you to define your own equality comparison in
a class that implements this interface.

Create a new Project Lab9 and import into it all files from the sources
folder. Then, import the files from the interfaces folder, but identify to
import the whole folder, not just the individual files. This will bring in the
files as a package. Finally, add the tester.jar variable — making sure you use
the version supplied with this lab.

The previous version included the Traversal and ISame interfaces — we have
moved them to a separate package, so that you can see the definitions.

9.1 Documentation, Traversals, Exceptions, Java Libraries

Spend no more than 20 minutes on this part. Do the rest at home.

Generating Documentation

• Once Eclipse shows you that there are no errors in your files select
Generate Javadoc... from the Project pull-down menu. Select to gen-
erate docs for all files your project that are in the default package with
the destination Lab9/doc directory.

2

Lab 9 c©2007 Felleisen, Proulx, et. al.

You should be able to open the index.html file in the Lab9/doc directory
and see the documentation for this project. Compare the documen-
tation for the class Album with the web pages. You see that all com-
ments from the source file have been converted to the web document.

Observe the format of the comments, especially the /** at the begin-
ning of the comment. If you do not understand the rules, ask the TA
or one of the tutors, or experiment with new comments. From now on
all of your work should have a proper Javadoc style documentation.

• Now use the documentation to see what are the fields in various
classes and what methods have been defined already.

• Repeat the above for the interfaces package, but select a different di-
rectory where to store the documentation. Look at the documentation
to see how these interfaces are defined.

Defining and Handling Exceptions

• The file IllegalUseOfTraversal.java illustrates the definition of an Exception
class.

The class Traversal shows you the headers for the methods that throw
an Exception.

The class AlbumListTraversal illustrates how the user designs the method
that throws an exception and reports on the discovered problem.

Look at the code briefly, but mainly use it as a reference for your
programs later on.

9.2 Using ArrayList with Mutation

Spend no more than 25 minutes on this part. Do the rest at home.
Open the web site that shows the documentation for Java libraries

http://java.sun.com/j2se/1.5.0/docs/api/.

Find the documentation for ArrayList.
Here are some of the methods defined in the class ArrayList:

// how many items are in the collection
int size();

3

c©2007 Felleisen, Proulx, et. al. Lab 9

// add the given object of the type E at the end of this collection
// false if no space is available
boolean add(E obj);

// return the object of the type E at the given index
E get(int index);

// replace the object of the type E at the given index
// with the given element
// produce the element that was at the given index before this change
E set(int index, E obj);

Other methods of this class are isEmpty (checks whether we have added
any elements to the ArrayList), contains (checks if a given element exists in
the ArrayList — using the equals method), set (mutate the element of the list
at a specific position), size (returns the number of elements added so far).
Notice that, in order to use an ArrayList, we have to add

import java.util.ArrayList;

at the beginning of our class file.
The methods you design here should be added to the Examples class,

together with all the necessary tests.

Task:

• Design the method that determines whether the album at the given
position in the given ArrayList of Albums has the given title.

• Design the method that swaps the elements of the given ArrayList at
the two given positions.

9.3 Converting Recursive Loops into Imperative while Loops

Allow at least 35 minutes on this part. Do the rest at home.
In this part we will see several different ways to implement loops in

Java. The given code in the Algorithms class illustrates how the different
variants of loops are designed. Your task will be to design for each variant
of the loop the method filter that produces an ArrayList of all items that
satisfy the given predicate.

We will look together at the first two examples of orMap in the Algo-
rithms class.

4

Lab 9 c©2007 Felleisen, Proulx, et. al.

We first write down the template for the case we already know — the
one where the loop uses the Traversal iterator. We start by converting the
recursive method into a form that uses the accumulator to keep track of
the knowledge we already have, and passes that information to the next
recursive invocation.

Read carefully the Template Analysis and make sure you understand the
meaning of all parts.

5

c©2007 Felleisen, Proulx, et. al. Lab 9

TEMPLATE - ANALYSIS:

return-type method-name(Traversal tr){

+--------------------+
// invoke the methodAcc: | acc <-- BASE-VALUE |

+--------------------+
method-name-acc(Traversal tr, BASE-VALUE);

}

return-type method-name-acc(Traversal tr, return-type acc)
... tr.isEmpty() ... -- boolean ::PREDICATE
if true:
... acc -- return-type ::BASE-VALUE
if false:

+---------------+
...| tr.getFirst() | ... -- E ::CURRENT

+---------------+

... update(T, return-type) -- return-type ::UPDATE
+----------------------------+

i.e.: ...| update(tr.getFirst(), acc) | ...
+----------------------------+

+--------------+
... | tr.getRest() | -- Traversal<T> ::ADVANCE

+--------------+

... method-name(tr.getRest(), return-type) -- return-type
i.e.: ... method-name-acc(tr.getRest(), update(tr.getFirst(), acc))

Based on this analysis, we can now design a template for the entire problem — with the solution
divided into three methods as follows:

COMPLETE METHOD TEMPLATE:

<T> return-type method-name(Traversal<T> tr){

+------------+
method-name-acc(Traversal tr,| BASE-VALUE |);

+------------+
}

<T> return-type method-name(Traversal<T> tr, return-type acc){
+--------------+

if (| tr.isEmpty() |)
+--------------+

return acc;
else

+--------------+
return method-name-acc(| tr.getRest() |,

+--------------+
+----------------------------+
| update(tr.getFirst(), acc) |);
+----------------------------+

}

<T> return-type update(T t, return-type acc){ ...
}

6

Lab 9 c©2007 Felleisen, Proulx, et. al.

Task 3:

• Look at the first two variants of the orMap method (the recursively
defined variant and the variant that uses the while loop. Identify the
four parts (BASE-VALUE, Termination/Continuation PREDICATE,
UPDATE, and ADVANCE) in each of them.

Look also at the tests in the Examples class.

• After you understand how the while loop works, design two variants
of the method filter that produces a new ArrayList that contains all
elements of the original list that satisfy the given ISelect predicate.

Test the methods by producing all albums released before the given
year.

• Optional — skip and finish at home, if necessary

Design and test two variants of the andMap method that determines
whether all elements of a given list satisfy the given ISelect predicate.

Test the methods by producing all albums released before the given
year.

Converting while loops into for loops

If you have the time left, repeat all the parts of Task 3 with the remaining
two variants of the orMap — namely the one that uses the for loop with the
Traversal and the one that uses counted for loop.

Portfolio

At home, add to your lab project a new class that represents data of your
choice, design an ISelect predicate for that class of data, and test all methods
on ArrayLists of your data.

7

