
Lab 7 c©2007 Felleisen, Proulx, et. al.

7 Designing Tests for State Change
Abstracting with Function Objects

Goals

In the first part of this lab you will learn how to correctly design tests for
the methods that change the state of an object.

In the second part of the lab you will learn to abstract over the func-
tional behavior.

7.1 Designing Tests for State Change

For this part download the files in Lab7-Part1-fl07.zip. The folder contains
the files ImageFile.java, ISelect.java, SmallImageFile.java, AList.java, MTList.java,
ConsList.java, and Examples.java.

Starting with partially defined classes and examples will give you the
opportunity to focus on the new material and eliminate typing in what
you already know. However, make sure you understand how the class is
defined, what does the data represent, and how the examples were con-
structed.

Create a new Project Lab7-fl07 and import into it all of the given files.
Also import tester.jar from the previous lab.

• Design the method crop that changes the dimensions of an ImageFile
object to the given width and height. The Examples class contains com-
ments on what needs to be done to design the tests. Follow the outline
given by the comments to design the needed tests.

• Design the method changeName that allows us to change the name
field of an ImageFile object. Design the tests.

7.2 Quiz

7.3 Abstracting with Function Objects

We will now practice the use of function objects. The only purpose for defin-
ing the class SmallImageFile is to implement one method that determines
whether the given ImageFile object has the desired property. An instance
of this class can then be used as an argument to a method that deals with
ImageFiles.

1



c©2007 Felleisen, Proulx, et. al. Lab 7

1. In the Examples class design the tests for the class SmallImageFile.

2. Design the method allSmallerThan40000 that determines whether all
items in a list are smaller that 40000 pixels. The method should take
an instance of the class SmallImageFile as an argument.

3. Design the class NameShorterThan4 that implements the ISelect inter-
face with a method that determines whether the name in the given
ImageFile object is shorter than 4.

Make sure in the class Examples you define an instance of this class
and test the method.

4. Design the method allNamesShorterThan4 that determines whether all
items in a list have a name that is shorter than 4 characters. The
method should take an instance of the class NameShorterThan4 as an
argument.

5. Design the method allSuch that that determines whether all items in
a list satisfy the predicate defined by the select method of a given
instance of the type ISelect. In the Examples class test this method
by abstracting over the method allSmallerThan40000 and the method
allNamesShorterThan4.

6. Design the class GivenKind that implements the ISelect interface with
a method that produces true for all ImageFiles that are of the given
kind. The desired kind is given as a parameter to the constructor, and
so is specified when a new instance of the class GivenKind is created.

Hint: Add a field to represent the desired kind to the class GivenKind.

7. In the Examples class use the method allSuch and the class GivenKind
to determine whether all files in a list are jpg files. Do it again, but
now ask about thegiff files.

8. If you have some time left, design the method filter that produces a
list of all ImageFiles that satisfy the ISelect predicate. Test it with as
many of your predicates as you can.

9. For the first portfolio program, at home, follow the same steps as
above to design the method anySuch that that determines whether
there is an item a list that satisfies the predicate defined by the select
method of a given instance of the type ISelect.

2


