
Lab 6 c©2007 Felleisen, Proulx, et. al.

6 Starting in Eclipse

Goals

In the first part of this lab you will learn how to work in a commercial
level integrated development environment IDE Eclipse, using the Java 1.5
programming language. There are several step in the transition from Pro-
fessorJ:

1. Learn to set up your workspace and launch an Eclipse project.

2. Learn to manage your files and save your work.

3. Learn the basics of the use of visibility modifiers in Java.

4. Learn the basics of writing test cases in Java.

6.1 Learn to set up your workspace and launch an Eclipse project.

Start working on two adjacent computers, so that you can use one for look-
ing at the documentation and the other one to do the work. Find the web
page on the documentation computer:

http://www.ccs.neu.edu/howto/howto-windows-n-unix-homedirs.html

and follow the instructions to log into your Windows/Unix account on
the work computer.

Next, set up a workspace folder in your home directory where you will
keep all your Java files. This should be in

z:\\eclipse\workspace

Note that z: is the drive that Windows binds your UNIX home direc-
tory.

Start the Eclipse application.
DO NOT check the box that asks if you want to make this the default

workspace for eclipse

1

c©2007 Felleisen, Proulx, et. al. Lab 6

Starting a new Project

• In the File menu select New select Project.

• In the pane that opens, under Java wizard select Java Project.

• Name the project Project1
You can select a different name, but here we will refer to this project
as Project1.

• In the bottom part select Create separate source and output folders
and click on Next.

• In the next pane just hit Finish.

• Now in the Package Explorer pane there should be Project1. Click on
the triangle or the plus sign on the side to open up the sub-parts, and
do so again next to src line.

• Download the file EclipseLab.zip to the desktop and un-zip it. Ask
for help if you do not know how. You should now have a folder
named EclipseLab with four folders in it: Book, Tester, BlobWorld, and
UFO.

The first one contains two simple classes Book.java and BookTests.java
designed to get you started.

The second one Tester ads the file that provides the test harness code
and an example of its use.

The folder BlobWorld has three files, Blob.java and TimerTests.java that
illustrate the use of the world library that differs from the world li-
brary in DrScheme/ProfessorJ only in the fact that it requires that the
method names (and the fields) be declared as public. We will get back
to this soon.

The fourth folder WorldLibrary has the World library that works with
the full Java in the Eclipse project..

You will now start working with the first folder.

• Highlight the src in the Package Explorer pane and select Import.

• Under Select an import source choose File System and click on Next.

• Next to From directory click on Browse and select the folder Book.

2

Lab 6 c©2007 Felleisen, Proulx, et. al.

• Highlight the Book in the left pane, then select both files in the right
pane.

• Leave all other selections unchanged and click on Finish.

• You should be back in the main Eclipse view. In the Package Explorer
pane under the src in your Project1 there should be a default package
with the two files in it. Open both files.

• Right-click on BookTests.java and select Run as Java Application.

• The program should run and produce output in the Console window
on the bottom. However, the window is very small. If you double-
click on any window tab in the Eclipse workspace, it will get resized
to cover the whole Eclipse pane. Double-clicking on its tab again re-
stores it back to the original view. Try it with the source files as well.

6.2 Learn to manage your files and save your work.

You noticed that instead of using one file to keep all of our work we now
have two different files. Java requires that each (public) class or interface is
saved in a separate file and the name of that file must be the same as the
name of the class or interface, with the extension .java. That means, you
will always need several files for each problem you are working on.

First, modify the files you were given by adding two more examples of
books to the BookTests class. Run your program.

Now save all your files as an archive. Go to the workspace subdirectory
of your eclipse directory and find the directory Project1. Make a .zip archive
of the files in the src subdirectory and save the archive in a folder where
you keep your work.

You can also create an archive of your project by highlighting the project,
then choose Export then select Zip archive. Eclipse will ask you for a folder
where to place the zip file and will let you choose the name for the zip file.

Your project will remain in the Eclipse workspace, but now you have
saved a copy that will not change as you keep working.

6.3 Learn the basics of the use of visibility modifiers in Java.

Add a class Author that contains the information about author’s name and
age and modify the class Book to refer to an object in the Author class. Of
course, you need to define a new file with the name Author.java.

3

c©2007 Felleisen, Proulx, et. al. Lab 6

Notice that all declarations in the project files start with the word pub-
lic. These keywords represent the visibility modifiers that inform the Java
compiler about the restrictions on what other programs may refer to the
particular classes, fields, or methods. Until you learn how to design the
test suite yourself, you must declare as public every field that is involved
in determining equality of two different instances of this class.

Declare the fields name and age in the class Author to be public. Make
example of data in the BookTests class and modify the examples of the Book
class correspondingly.

Design the method younger that determines whether the author of one
book is younger than the author as another book.

Add tests for the method to the BookTests class, following the technique
already illustrated there.

6.4 Learn the basics of writing test cases in Java.

Without the tools we built you would now be on our own - with no help
from ProfessorJ to show you nicely the information represented by our ob-
jects, or to provide an environment to run our test suite.

We will learn how to do this - gradually. Until then, the tester package
lets us both design tests quite easily, and print the results formatted for
human consumption.

Viewing the data definitions

The class BookTests shows the simplest way to display information about
out data. It is sufficient for simple data, but becomes quite complex when
our data represents a list of five items, each with three fields, where one
of them is an abject with two fields — not an uncommon situation in our
programs.

Designing tests using the Tester test harness

Our goal when designing tests is to make sure that we can tell easily not
only that some tests failed, but also which test failed.

Download and unzip the Testing.zip file. Add to your project the file
Examples.java from the Testing.zip file. Look at its contents.

It starts with import tester.*; Read the file and identify its parts:

4

Lab 6 c©2007 Felleisen, Proulx, et. al.

• The class Examples must implement Testable:

//--
// Examples class for the Book class
public class Examples implements Testable{

• Next we define the data to be used in tests:

public Book book1 = new Book("DVC", 2002);
public Book book2 = new Book("Beach", 1999);

• Next we define the tests in a method that implements the Testable in-
terface:

// combine all tests
public void tests(Tester t){

t.test("Book before a", book1.before(2000), false);
t.test("Book before b", book2.before(2000), true);

}

Each test case has a name - that way we can see which of the tests
failed. Each test is an invocation of the method test in the class Tester,
using the given instance of Tester.

The method requires three arguments, the name of the test, the ac-
tual value, and the expected value. It compares the given values and
records the result of the test for the final report.

• Next we define the method that manages the test run. It first creates
an instance of the Tester class. Then it invokes the method runTests
that in turn invokes the tests method in this class, using the new in-
stance of the Tester class as its argument. So the results of all tests are
recorded by our instance of the Tester class.

// ---- generate the test reports -----------------
// add at the end of the Examples class
public void go(){

// create a new Tester to record all test results
Tester tester = new Tester();

// run all tests
tester.runTests(this);

5

c©2007 Felleisen, Proulx, et. al. Lab 6

• We can now report the tesrt results, either the short version that re-
ports only the failures:

// print a short report - of only the failed tests
System.out.println("Invoking t.testReport: \n");
tester.testReport();

• Or the full report that shows the actual and expected values in all
tests:

// print full report - all expected/actual values
System.out.println("----------------------------");
System.out.println("Invoking t.fullTestReport:\n");
tester.fullTestReport(); }

• Finally, we need the main method with the header public static void
main(String[]argv) that creates a new instance of the Examples class,
prints all fields defined in this class and then invokes the go method
defined above:

public static void main(String[] argv){
System.out.println("In the Examples class:");

Examples e = new Examples();

System.out.println(
"Show all data defined in the Examples class:");

System.out.print(Inspector.makeString(e));

System.out.println("\n\n-----------------------");
System.out.println("Invoke tester.runTests(this):");
e.go(); } }

6.4.1 Managing the Libraries

The import tester.*; statement indicates that someone somewhere
has defined a library that contains the code for the tester classes that are
combined into the tester package. Before we start a project that uses these
libraries, we need to make sure that the libraries are saved in a known lo-
cation and that the projects that need them will be able to find them.

• First, create a folder EclipseJars in the same folder where you have
the Eclipse workspace. (This is our convention, not an Eclipse require-
ment.)

6

Lab 6 c©2007 Felleisen, Proulx, et. al.

• Copy into this folder the three library file tester.jar. Note Later we will
also add the libraries for the World: draw.jar, colors.jar, and geometry.jar
to this folder.

• In the Project menu select Properties.

• In the left pane select Java Build Path

• In the top menu line select Libraries

• On the right select Add Variable A pane with title New Variable
Classpath Entry will open.

• Click on Configure Variables...

• Click on New to get the New Variable Entry pane

• Enter tester as Name and click on File... to select the tester.jar file in your
EclipseJars directory.

• Hit OK. A new entry should be visible under the Classpath Variables.

• Click again on Configure Variables... and follow the same steps to add
the files draw.jar to the Variables, colors.jar to the Variables, and to add
the file geometry.jar to the Variables, once we get to working with the
World library.

• Hit Cancel to get back to the main Eclipse environment.

From now on all your projects will be able to use these libraries.

Configuring a Project with the World Library

In our project BookTests after we added the Examples.java file, the Examples
file is marked with a number of errors. It needs the tester library.

To work with the libraries you need to add the tester Variable you de-
fined earlier to this project. The process is similar to what you did earlier:

• In the Project menu select Properties.

• In the left pane select java Build Path

• In the top menu line select Libraries

7

c©2007 Felleisen, Proulx, et. al. Lab 6

• On the right select Add Variable A pane with title New Variable
Classpath Entry will open.

• Click on tester entry in the list of available Variables and hit OK.

• When you are done, hit OK to get back to you project environment.

You can now run the code by selecting Run as Java Application button
when the Examples class is in the main window.

Add more tests and examples of data to the Examples class and make
sure your program runs again.

Save your results as a .zip file.

6.5 The World

Our projects that extended the World contained three import statements,
indicating that we need to use classes defined in three different libraries
written by someone else. Before we start a project that uses these libraries,
we need to make sure that the libraries are saved in a known location and
that the projects that need them will be able to find them.

Follow the same steps as before to define three classpath variables, one
for each of the three packages: draw.jar, colors.jar, and to add the file geome-
try.jar.

Start a new project BlobWorld. Import the .java files from the BlobWorld
folder. Notice that the files are marked with a number of errors. You need
the World library.

To work with the libraries you need to add the three Variables you de-
fined earlier to this project. The process is similar to what you did earlier.

You can now run your BlobWorld project. The key controls the move-
ment of the ball, but the timer also moves the ball randomly on each tick.
The user interface is nearly the same as we have seen in ProfessorJ.

Make sure you can run the project and see how it is designed.
Spend the rest of the lab adding new features to the BlobWorld game.

8

