Lab4

(©2007 Felleisen, Proulx, et. al.

Abstracting over Data Definitions

A bank customer can have three different accounts: a checking account, a
savings account, and a line of credit account.

4.1

The customer can withdraw from a checking account any amount
that will still leave the minimum balance in the account. The cus-
tomer can withdraw all money from a savings account. The balance
of the credit line represents the amount that the customer already
borrowed against the credit line. The customer can withdraw any
amount that does not make the balance exceed the credit limit.

The customer can deposit money to the account in any amount. If the
customer deposits more to the credit line than the current balance, the
balance will become negative — indicating overpayment.

Review of Designing Methods for Unions of Classes.

The code in lab4-banking.bjava defines the classes that represent this infor-
mation.

1.

4.2

Make examples of data for these classes, then make sure you under-
stand the rules for withdrawals.

Now design the methods that will manage the banking records:

Design the method canWithdraw that determines whether the cus-
tomer can withdraw some desired amount.

Design the method makeDeposit that allows the customer to deposit a
given amount of money into the account.

Design the method maxWithdrawal that computes the maximum that
the customer can withdraw from an account.

Design the method moreAuvailable that produces the account that has
more money available for withdrawal.

Abstracting over Data Definitions: Lifting Fields

Save your work and open it again with the file type “ijava’. Change the
language level to Intermediate Professor].

(©2007 Felleisen, Proulx, et. al. Lab4

Look at the code and identify all places where the code repeats — the
opportunity for abstraction.

Lift the common fields to an abstract class ABanking. Make sure you
include a constructor in the abstract class, and change the constructors in
the derived classes accordingly. Run the program and make sure all test
cases work as before.

4.3 Abstracting over Data Definitions: Lifting Methods

For each method that is defined in all three classes decide to which category
it belongs:

1. The method bodies in the different classes are all different, and so the
method has to be declared as abstract in the abstract class.

2. The method bodies are the same in all classes and it can be imple-
mented completely in the abstract class.

3. The methods look very similar, but each produces a different variant
of the union — therefore it cannot be lifted to the super class.

4. The method bodies are the same for two of the classes, but are differ-
ent in one class — therefore we can define the common body in the
abstract class and override it in only one derived class.

Now, lift the methods that can be lifted and run all tests again.

Part 2: Designing the Pong Game

A Game of Pong

| |
| |
T XXKK- = = === mmmmmme e e +
Rules:

A Dball starts at a random height on the left and falls from the left side
diagonally down. At the bottom is a paddle that can move left and right

2

Lab4 (©2007 Felleisen, Proulx, et. al.

controlled by the arrow keys.When the ball hits the bottom, but misses
the paddle, it disappears from the game. When the ball hits the paddle,
it bounces back and continues diagonally up to the right. When the ball
exits the playing field, a new ball comes into play.
Classes needed:

Ball - a Posn and the direction in which the ball moves (up or down)

Paddle - a Posn

PongWorld - contains one Ball and one Paddle, has a fixed width and
height

The code in the file pong-game-skeleton.ijava defines the classes that rep-
resent the ball, the paddle, and the world. (For now, we ignore the world).

The class PongWorld extends the class World in the teachpack. Therefore,
we need to use Professor| Intermediate Language.

4.4 Designing methods in the class Ball

1. Design the method draw that displays the ball on a canvas. The fol-
lowing code (that can be written within the Examples class shows how
you can draw one circle:

i mport draw. *;
i nport colors. *;
i mport geonetry. *;

cl ass Exanpl es{
Exanpl es() {}

Canvas ¢ = new Canvas(200, 200);

bool ean makeDrawi ng =
this.c.show) &&
this.c.drawb sk(new Posn(100, 150), 50, new Red());

The three import statements on the top indicate that we are using
the code programmed by someone else and available in the libraries
named draw, colors, and geometry. Open the Help Desk and look under
the Teachpacks for the teachpacks for How to Design Classes to find out
more about the drawing and the Canuvas.

3

(©2007 Felleisen, Proulx, et. al. Lab4

2. Design the method moveBall that moves the ball five pixels in its di-

rection.

3. Design the method bounce that produces a ball after it bounced up to

the right, and with its direction set to move up to the right.

4. Design the method hitBottom that determines whether the ball hit the

bottom of the canvas of the given height.

5. Design the method outOfBounds that determines whether the ball is

4.5

1.

4.6

out of bounds of the canvas of the given width and height.

Designing methods in the class Paddle

Design the method draw that displays the paddle on a given canvas
of the given height.

Design the method movePaddle that consumes a String and moves the
paddle either left or right depending on the String it receives as argu-
ment. For now, ignore the requirement that the paddle stays within
the bounds of the canvas. (You may add it later, once the program is
working.)

. Design the method hitBall that determines whether the paddle hit the

given ball. For simplicity, just make sure that the distance between
the center of the ball and the center of the top of the paddle is less
than or equal to the radius of the ball. You may need to delegate the
work to the class Ball.

Designing methods in the class PongWorld

. Design the methods draw and erase that show the background, the

ball, and the paddle. Make the background black.

. Finally, add some interactions to your program, by letting the paddle

move in response to the key events. Design the method onKeyEvent
that consumes a String and moves the paddle left, or right by 5 pixels
every time the user hits one of the corresponding arrow keys.

Use the code in the program WorldDemo.ijava to figure out how to
respond to the key events and to see how to run the program.

. Design the method onTick as follows:

4

Lab5 (©2007 Felleisen, Proulx, et. al.

o If the ball is out of bounds, replace the ball with a new ball. Ini-
tially, start the new ball in the top left corner. When everything
else is working, make the ball start on the left edge at a random
height between the top and the middle.

o If the ball hit the paddle, replace the ball with a new one going
in the opposite direction - and moved ahead.

Hint: Recall the method bounce in the class Ball.
e Otherwise, just move the ball in its direction.

e Currently the world never ends. When all is working, think of
what may be the appropriate end of the game (count the num-
ber of balls that were put into play, the number of balls that hit
the paddle, or the number of elapsed ticks. Then modify the
appropriate methods so that the world eventually ends.

Save all your work — the next lab may build on the work you have done
here!

Quiz
5 All are equal, but some are more equal than others.

Goals:

Learn how to determine the equality of two objects in a Java program.

The definitions of all the classes are already provided. The classes in-
clude a method translate in the class CartPt and the method move in the
remaining classes. Both methods consume the distance dx and dy by which
the items should be moved or translated. Additionally, some sample data is
also given. Your goal is to design the method same that determines whether
the values of two objects are the same (according to our definition of same-
ness).

5.1 Equality of simple classes

We start with our class of CartPt. The class is defined as follows:

(©2007 Felleisen, Proulx, et. al. Lab5

| int x |
| inty |
B e +
| CartPt translate(int dx, int dy) |
S +

The method move is defined as follows:

// translate the position of this point by the given dx and dy
CartPt translate(int dx, int dy){

return new CartPt(this.x + dx, this.y + dy);
}

Our tests are designed as follows:

CartPt pt1 = new CartPt(20, 30);

boolean testMove = check pt1.move(—5, 8) expect new CartPt(15, 38);

Of course we know, that the check form compares the values of pt1 and
the new CartPt we specified as the expected result. To replace this test by
our own, we need a method in the class CartPt that determines whether
this point is the same as the given one.

// is this point the same as the given one?
boolean same(CartPt that){...}

Design this method.

5.2 Equality of classes with containment

We now want to see if two stars in our Shooting Stars program are the same.
Here is the class diagram for the class Star:

e me e ee e iieeiaa et e aa +
| Star |
o e e e e e e e aa o +
| CartPt |oc |
| int lifespan |
o e e e e e e e aa o +
| Star move(int dx, int dy) |
e eeeeeeeeeeeeeeeeaaaaaaas +

Design the method same that determines whether two stars are the same.
We consider two stars to be the same if they are at the same location and
have the same lifespan.

Lab5 (©2007 Felleisen, Proulx, et. al.

Rewrite the tests as follows (remember, as the star moves, it also de-
creases its lifespan):

CartPt pt1 = new CartPt(20, 40);
boolean testTranslate = pt.translate(3, —5).same(new CartPt(23, 35));

Star star = new Star(this.pt1, 9);
boolean testMove = star.move(3, —5).same(new Star(new CartPt(23, 35), 8);

Save all your work — the next lab may build on the work you have done
here!

