
Lab 11 c©2006 Felleisen, Proulx, et. al.

11 User Interactions

Goals

In this lab you will learn a little about programming user interactions using
the Model-View-Control pattern for organizing the responsibilities.

In the first part you will just see how to desing a simple test-based in-
teractions with the user. You do not have to add anything, just run the
program and use it as a guide in your own projects.

In the second part you will learn quickly how the world based games
can be converted to applets. Again, all you need to do is fill in the blanks —
there are no changes in your program, only two small additional files that
allow us to construct the worlds and invoke the bigBang method.

The third part is where you actually learn a lot. You have a complete
example of a program that builds a GUI based user interface and interacts
with it. Use any part of it as a model for your work anytime anywhere. It is
based on the JPT library that simplifies many tasks associated with design-
ing GUIs in Java, but makes the essence of what has to be done clearly visi-
ble and accessible. Other languages have other libraries for building GUIs -
you need to know what are the basic concepts without being bogged down
in idiosyncratic details.

The JPT library allows you to concentrate on the key concepts and avoid
the pitfalls of multitude of details, typically associated with GUI program-
ming.

Text-Based IO

Download the file Conversation.zip and create a project Conversation. Add
the jpt.jar library to your project and you are ready to run it - starting with
the Interactions class.

It will open a GUI with a button for every public method defined in that
file that consumes no arguments and has the return type void. You can then
invoke any of these methods by clicking on the corresponding buttons. So,
clicking on the testSuite button will run the tests in the Examples class.

Look at the implementation of the conversation method in the class Inter-
actions. You see that it just asks the user for his name and prints a response,
then asks the user for his age and prints another response.

Next, look at the class Person. We added two simple methods that allow
us to save or print the data that an instance of this class represents, and in

1

c©2006 Felleisen, Proulx, et. al. Lab 11

reverse, use the input String to initialize the fields. the second part is a bit
tricky. We first have to use a default constructor to create an instance with
none of the fields initialized, and then invoke the fromStringData method
to use the given String to initialize the fields. Because all fields have been
translated into one String, we need to take the String apart and also convert
the String representation of a number into the corresponding int.

Run the methods conversation and testStringable to see the actual inter-
actions. Use this as a guide for designing text-based user interactions.

Making Applets

An Applet is a (small) Java application that runs in a browser, or as a stan-
dalone interactive window. The World based games you have designed
earlier can be converted to applets very easily.

Download the files BlobWorld.zip and draw.jar. Create a project Blob-
World as you did before. Save the file draw.jar with your libraries, but
make a new folder for it named AppletDraw. This is to make sure you do
not overwrite your existing draw.jar library. Add this library to your project.
Open the file BlobWorld.java and run it. Eclipse will ask you whether to
run it as an Applet, or will just do it automatically.

As you can see, there is very little in that file:

import geometry.Posn;
import draw.*;

public class BlobApplet extends WorldApplet{

// construct an instance of the BlobWorld
public World getNewWorld(){
return

new BlobWorld(new Blob(new Posn(100, 200), 20));
}

}

For any of your World projects you only have to create this file and have
the method getNewWorld return a new instance of your World.

To run this from a web browser, yoou need just a little bit more. The
html file youneed looks like this:

<html>
<head>
<title>My World Applet</title>

2

Lab 11 c©2006 Felleisen, Proulx, et. al.

</head>

<body>

<h3> Blob World Applet </h3>
<p>My world consists of a red blob ...</p>

<applet code="BlobWorldApplet.class" width="200" height="400">
<param name=cWIDTH value="200">
<param name=cHEIGHT value="300">

</applet>

<hr>

</body>
</html>

The only missing part is what are the files you need to load onto the
web page. The instructions for doing it will be posted shortly.

The Model and the View

The diagram below (on the next page) describes the classes already in-
cluded in this application:

Here is a brief description of the role these files play in the application.

The model

The program deals with balloons (for now just three of them).

• class Balloon This class represents one balloon object, allows the user
to move it, paint it, and to compare two balloons for closeness to the
top of the graphics window.

We could have other classes here, such as a list of balloons, or a list of
tied-up balloons and a list of floating balloons, etc.

The views

We can view the information about a particular Balloon object in several
different ways. The BalloonInput interface provides two methods for getting
the data needed to construct an instance of a new Balloon.

3

c©2006 Felleisen, Proulx, et. al. Lab 11

+--------------+
| DisplayPanel |
+--------------+

/ \

|

+---------------------------+
| BalloonControl |
+---------------------------+

+--| BalloonInputView bView |
| | Balloon b |---------+
| | BufferredPanel window |---+ |
| | SimpleAction paintAction | | v
| | SimpleAction newAction | | +------------+
| | SimpleAction cancelAction | | | Balloon |
| +---------------------------+ | +------------+
	void paintAction()			int x
	void paintAction()			int y
	void cancelAction()			int radius
+---------------------------+		Color c		
	+------------+			
v				
+---------------+				
	BufferedPanel			
+---------------+				
+-------------------------------------+				
	interface: BalloonInput			
+-------------------------------------+				
	Balloon demandBalloon()			
	Balloon requestBalloon()			
	throws CancelledException			
+-------------------------------------+				
/ \				
+- - - - - - - - - - - - - - - - -+				
+-----------------------+ +---------------------+				
	GUIBalloonInput		ConsoleBalloonInput	
+-----------------------+ +---------------------+				
	BalloonInputView bGUI	--+ +---------------------+		
+-----------------------+				
	+---------+			
		Display		
+---------------------+ | +---------+

| | / \
| | ---
v v |

+----------------------------+
| BalloonInputView |
+----------------------------+
| TextFieldView xTFV |
| TextFieldView yTFV |
| SliderView rSlider |
| ColorView cVieW |
+----------------------------+
| TablePanel createDisplay() |
+----------------------------+

4

Lab 11 c©2006 Felleisen, Proulx, et. al.

To display the information about a Balloon object, we can print a String
that represents the Balloon object in the console, or paint it in the given
window, or display the values of its fields in a GUI.

To get the data from the user that is needed to instantiate a new Balloon
we can read from the console, or from a GUI.

• interface BalloonInput contains two methods: demandBalloon() and re-
questBalloon() that allow us to instantiate a Balloon object from the
source that implements the methods.

• class ConsoleBalloonInput implements the BalloonInput interface used
for reading the input from the console.

• class BalloonInputView defines a GUI to request the user input for the
data needed to initialize one Balloon instance. It contains two TextField-
Views, one SliderView, and one ColorView. It also allows us to display
the data that represents an instance of a Balloon.

• class GUIBalloonInput implements the BalloonInput interface for ex-
tracting the user input from the BalloonInputView GUI.

The control

• class BalloonControl adds to the GUI Actions. These are buttons that
allow the user to choose an action, such as read the Balloon data from
a GUI and display the Balloon in the given canvas. (Our canvas is a
window – a buffered panel.)

Run the code, and note the behavior in response to the various buttons.

Getting Familiar with the Environment

1. The model

Read the code for the class Balloon. Add the method eraseBalloon which
will paint the balloon in a white color (Color.white). Make sure you
have the examples and tests for this method.

2. The console input

5

c©2006 Felleisen, Proulx, et. al. Lab 11

Read the code for the method testConsoleInput in the class Interactions.
Describe to your partner what the method does. Look at the Con-
soleBalloonInput class and see how the methods demandBalloon and re-
questBalloon are implemented. Run the code and see what happens if
you type in a wrong data, or when you do not provide any input.

3. The actions

Find the code for the action for the New button. Currently, it only
sets the value of the Balloon instance variables. Add to this action a
call to the method which paints the balloon, from the class Balloon.
Make sure it works.

4. Text input from a GUI

Find all places where the xTFV is defined or used. It is constructed
in the class BalloonInputView. This class also defines the methods de-
mandBalloon and requestBalloon, each of them produces a new instance
of a Balloon from the user inputs.

In the class BalloonControl user input to the BalloonView initializes the
value of a Balloon object that represents our model. We could add to
our model a list of tied balloons and a list of floating balloons, and
more - for example a child holding the balloon.

DO IT Using a similar technique, define a new TextFieldView named
rTFV, to represent the numerical value of the Balloon radius.

5. Connecting slider with a text field

Test the behavior of the slider. Does it have any effect on the bal-
loon? Does it have any effect on the value displayed in the rTFV
field? Change the value of the rTFV field. Does it affect the slider?
Does it affect the balloon?

The two views represent the same value and so should be designed
to mimic each other. the slider has to act by changing its position
whenever a new value is typed into the text field. The value in the
text field has to change when the slider is moved, so it reflects its
current position.

Define two new SimpleActions and the corresponding methods — an
rTFVaction and a SliderAction. It does not matter what you choose for
the label, because we are not going to use the actions with a button.

6

Lab 11 c©2006 Felleisen, Proulx, et. al.

The first one void rTFVaction will be invoked when the value in the
field rTFV changes. It should then set the value of the balloon radius
and the value of the rSlider to the value displayed in the rTFV. To set
the state of the rSlider use the method

rSlider.setViewState("" + b.radius);

The second method void rSliderAction() will be invoked every time
the location of the slider (and the value it represents) changes. It must
then change the radius of the balloon and set the view state of the rTFV
calling the method setViewState in a manner similar to the above. If
you run the program now, you may be surprised to see that these
changes have no effect. Can you think of the way to test that the
methods work correctly?

6. Listening to changes in the values

Now you have to tell the rSlider and the rTFV to perform this action
when their values change. The following two statements have to be
added at the end of the method void createViews():

rTFV.addActionListener(rTFVaction);
rSlider.addSlidingAction(sliderAction);

The first one tells the rTFV to perform the rTFVaction whenever its
value changes. The second one tells the rSlider to perform the slid-
erAction whenever the position of the slider (and thus the value it
represents) changes.

Test that this works.

7. Reporting changes in the model to the view

Now that you have seen the method setViewState, add such method
to the class BalloonInputView. To see that is works, we need to modify
some of the fields of a Balloon instance and invoke the method. Try it.

8. Adding mouse actions

In the last part you will control the balloon with the mouse. You need
to define what should happen when the mouse is clicked (or dragged,
or released, etc.). You need to specify which GUI component should

7

c©2006 Felleisen, Proulx, et. al. Lab 11

listen to the mouse and the user mouse actions. You then need to
connect the MouseListener with the action it should trigger.

Build a separate frame

The first thing you need to do is to change the manner in which the
GUI is displayed. Look at the code in the class Interactions for the
method testBalloonControl(). Replace the line which calls the method
showOKDialog with the following:

JPTFrame.createQuickJPTFrame("Balloon Control", bc);

This places the BalloonControl into a window that runs in its own
thread, i.e. independently of the rest of the application. That allows
the rest of the application to watch out for the mouse movement and
clicks inside of the graphics window.

Define a mouse action The first mouse action you will build will
increase the radius of the balloon by ten, every time you click the
mouse. All of this is in the class BalloonControl. Start by defining the
method
protected click(MouseEvent mevt) which does the following:

• Print into the console a message that the mouse was clicked.

• Erase the balloon

• Increase the balloon radius by 10

• Set the view state of the BalloonInputView bView to the current
values of the balloon. (Only the radius has changed, but it is
easier to let the BalloonView do the whole job by invoking the
method setViewState.

• Finally, paint the changed balloon.

9. Defining and installing Mouse action adapter

Install a MouseActionAdapter for the BufferedPanelas follows:

• After the definition of the BufferedPanel, add the definition:

public MouseActionAdapter mouseAdapter;

8

Lab 11 c©2006 Felleisen, Proulx, et. al.

• Inside of the constructor for the class BalloonControl first initialize
the mouseAdapter as follows:

mouseAdapter = window.getMouseActionAdapter();

• Add the action to perform when the mouse is clicked as follows:

// respond to mouse clicks
mouseAdapter.addMouseClickedAction(

new MouseAction() {
public void mouseActionPerformed(MouseEvent mevt){

click(mevt);
}

});

At this point you should test that your program runs as you ex-
pected.

10. Tracking the mouse movement

Finally, you will make the balloon move when the mouse moves. Do
all the steps you have done for the clicked action, but do not get a
new mouseAdapter. The following code will add the action:

// track mouse motions
mouseAdapter.addMouseMovedAction(

new MouseAction() {
public void mouseActionPerformed(MouseEvent mevt){

track(mevt);
}

});

Inside of the track method get the coordinates of the mouse as follows:

b.x = mevt.getX();
b.y = mevt.getY();

and see what your program does. (Probably nothing - you still have
to erase the old balloon, before you make the changes, paint the new
balloon, and as a courtesy, set the view state for the view.) Now you
should have fun.

9

