
Lab 10 c©2007 Felleisen, Proulx, et. al.

10 Java Collections; Equality, JUnit

Activities

1. Familiarize yourself with some of the Java Collections Framework.

2. Learn the basics of overriding the hashCode and equals methods.

3. Learn the basics of working with the JUnit.

Warning

In the final project you will find useful almost everything from this lab.
Concretely, your porject should use some of the Java Collections Framework
classes and interfaces — showing that you can build on the work already
done. You will also be required to write your tests using JUnit, which,
in turn, requires that you override the equals method, and the hashCode
method as well.

10.1 Activity: Reading JavaDocs

Go to the Java API at http://java.sun.com/j2se/1.5.0/docs/api/. Bookmark this
page! When coding you will often use classes that are provided for you
by Java. The Java API describes these classes and lists all of the fields and
methods of these classes that are available to you.

The front page of the Java API lists all of the packages provided by Java.
A package is a collection of related interfaces and classes.

Tips For Quickly Finding Class Specifications

The left frame of the API page lists all classes alphabetically. If you want
the specifications for a specific class you can click in this frame and use
your web browsers search function to find that class. For example, find the
ArrayList class. Another way to quickly find Java API specifications is to
search Google for ”java api class x”, where x is the name of the class you’re
searching for. For example, the search ”java api class arraylist” returns the
specifications for class ArrayList as the first result.

1

c©2007 Felleisen, Proulx, et. al. Lab 10

The Anatomy of a JavaDoc

All of the specifications are in a JavaDoc format. JavaDocs are automati-
cally generated from source code based on specifically formated comments
that the programmer adds for each class and each method. We will look at
the format of such comments shortly.

Lets use the ArrayList JavaDoc as an example.
The top of the JavaDoc lists the other classes that ArrayList extends and

implements. In this case, ArrayList extends from the classes Object, Abstract-
Collection, AbstractList, and implements the interfaces Cloneable, Collection,
List, RandomAccess, Serializable.

Next is a general description of the class. In this case, the JavaDoc says
that ArrayList is a ”Resizable-array implementation of the List interface.”

Following this is a summary of fields, constructors, and methods pro-
vided by ArrayList. In general, classes will provide very few public fields
and the JavaDoc will contain mostly specifications of methods. Look over
some of the methods provided by ArrayList.

The method summaries provide headers (return type, name, and argu-
ments) and a short description of the method’s functionality. More detailed
descriptions are linked from these summaries and appear farther down on
the same page.

Stack, Queue, Priority Queue, LinkedList; Vector

Look up the documentation for the following Java classes and interfaces:
Stack, Queue, PriorityQueue, List, LinkedList and Vector. Identify which of
them represent interfaces, which represent abstract classes, and which pro-
vide a complete implementation that you can use in your program. Draw
a class diagram that shows the relationship between these classes and in-
terfaces.

Generating JavaDoc-s

For detailed description of how to write documentation for the automatic
Javadoc generator see http://java.sun.com/j2se/javadoc/writingdoccomments: How
to Write Doc Comments for the Javadoc.

To see how to write the commets in the javadoc style, look at the code
for the previous lab.

2

Lab 10 c©2007 Felleisen, Proulx, et. al.

Look first at the code for the class Traversal. Notice the special format of
the comments. Notice also that they are shown in a different color than the
comments we have seen so far.

When the comments for Java programs are written using this special
format, the documentation web pages can be generated automatically —
with all the cross-references necessary.

The comment always starts with /∗∗ and usually spans several lines.
Each line then starts with a ∗ and the last line has only ∗/ in it. When you
start typing such comment in Eclipse the color of the comment changes and
the ∗ at the beginning of the line is generated automatically. In addition the
beginnings of some of the special comment commands are also generated
for you.

To see how to write the comments while designing a program, start by
adding to the Examples class a stub of a method reverse1 with the header
below. (A stub is a method with a complete header and the body that only
produces the correct type of value, but does not perform the desired com-
putation. We use the stubs as place-holders when designing a program just
to make sure the program would compile. Later, we design the rest ofthe
method.)

public <T> ArrayList<T> reverse1(ArrayList<T> alist){
return alist;

}

then start the comment above. You will see that it generates the follow-
ing template for the comment:

/**
*
* @param <T>

* @param alist

* @return

*/

We complete the comment as follows:

/**
* Reverse the elements in the given <code>ArrayList</code>

* using a helper <code>ArrayList</code>

*
* @param <T> the datatype for the elements of <code>ArrayList</code>

* @param alist the original <code>ArrayList</code>

* @return <code>ArrayList</code> with elements in reverse order

*/

3

c©2007 Felleisen, Proulx, et. al. Lab 10

In Project menu select Generate Javadoc... and choose the doc folder
for the documentation. Choose to make the documentation pages only for
the class Examples.

When done, look at the pages in a browser. The index.html file will be in
the folder you have selected.

This is enough for a start — experiment with Javadoc-s for a whole
project at home. For the remainder of the semester, always write com-
ments so that we can generate complete documentation from the program
sources.

10.2 Activity: Working with HashMap: Overriding ’equals’

The goal of this lab is to learn to use the professional test harness JUnit. It is
completely separated from the application code. It is designed to report not
only the cases when the result of the test differs from the expected value,
but also to report any exceptions the program would throw. The slight
disadvantage is that it uses the Java equals method that by default only
checks for the instance identity. To use the JUnit for the method tests similar
to those we have done before we need to override the equals any time we
wish to complare two instances of a class in a manner different from the
strict instance identity.

However, each time we override the equals method we should make
sure that the hashCode method is changed in a compatible way.

We start with learning to use HashMap class. We then see how we can
override the needed hashCode method. Finally, we also override the equals
method to implement the equality comparison that best suits our problem.

The last part of the lab shows you how you can measure the algorithm
performance (timing) to see concretely the differences between the running
times of different algorithms that have been designed to perform the same
tasks.

Part 1: Using the HashMap

Our goal is to design a program that would show us on a map the locations
of the capitals of all 48 contiguous US states and show us how we can travel
from any capital to another.

This problem can be abstracted to finding a path in a network of nodes
connected with links — known in the combinatorial mathematics as a graph
traversal problem.

4

Lab 10 c©2007 Felleisen, Proulx, et. al.

The Data

To provide real examples of data the provided code includes the (incom-
plete) definitions of the class City and the class State.

1. Download the code for Part 1 and build the project USmap.

2. Download the file of state capitals.

3. The project contains three implementations of the Traversal interface.
The InFileBufferedTraversal allows you to read any Stringable data into
an ArrayList. The OutFileTraversal saves the Stringable data stored in
an ArrayList into a file. The Interactions class contains the code that
shows you how to do this.

Run the code with some of the city data files.

4. The Examples class contains examples of the data for three New Eng-
land states (ME, CT, MA) and their capitals. Add the data for the
remaining three states: VT, NH, RI. Initialize the lists of neighboring
states for each of these states. Do not include the neighbors outside
of the New England region.

We now have all the data we need to proceed with learning about hash
codes, equals, and JUnit.

Using HashMap

The class USmap contains only one field and a constructor. The field is
defined as:

HashMap<City, State> states = new HashMap<City, State>();

The HashMap is designed to store the values of the type State, each cor-
responding to a unique key, an instance of a City — its capital.

Note: In reality this would not be a good choice to the keys for a HashMap —
we do it to illustrate the problems that may come up.

1. Go to Java documentation and read what is says about HashMap. The
two methods you will use the most are put and getKey.

2. Define the method initMap in the class Examples that will add to the
given HashMap the six New England states.

5

c©2007 Felleisen, Proulx, et. al. Lab 10

3. Test the effects by verifying the size of the HashMap and by checking
that it contains at least three of the items you have added. Consult
Javadocs to find the methods that allow you to inspect the contents
and the size of the HashMap.

Understanding HashMap

We will now experiment with HashMap to understand how changes in the
equals method and the hashCode method affect its behavior.

1. Define a new City instance boston2 initialized with the same values as
the original boston. Now put the state MA again into the table, using
boston2 as the key. The size of the HashMap should now be 7.

2. Now define the equals method in the class City that checks first whether
the given object is of the type City, then compares the two objects field
by field. The implementation of the ISame interface already does most
of what you will need.

Now run the same experiment as above. The resulting HashMap still
has size seven. Even though we think the two cities are equal, they
produce a different hash code.

3. Now hide the equals method (comment it out) and define a new hash-
Code method by producing an integer that is the sum of the hash
codes of all the fields in the City class.

Now run the same experiment as above. The resulting HashMap still
has size seven. Even though the two cities produce the same hash
code, the HashMap sees that they are not equal and does not confuse
the two values.

4. Now un-hide the equals method so that two City objects that we con-
sider to be the same produce the same hash code.

When you run the experiment again you will see that the size of the
HashMap remains the same after we inserted Massachusetts with the
boston2 key.

Note: Read in ”Effective Java” a detailed tutorial on overriding equals and
hashCode.

6

Lab 10 c©2007 Felleisen, Proulx, et. al.

Part 2: Introducing JUnit

You will now rewrite all your tests using the JUnit. In the File menu select
New then JUnitTestCase. When the wizard comes up, select to include the
main method, the constructor, and the setup method. The tests for each of
the methods will then become one test case similar to this one:

/**
* Testing the method toString

*/
public void testToString(){

assertEquals("Hello: 1\n", this.hello1.toString());
assertEquals("Hello: 3\n", this.hello3.toString());

}

We see that assertEquals calls are basically the same as the test methods
for our test harnesses, they just don’t include the names of the tests. Try
to see what happens when some of the tests fail, when a test throws an
exception, and finally, make sure that at the end all tests succeed.

Ask for help, try things — make sure you can use JUnit, so you will not run
into problems when working on the assignment and the final project.

Warning

Try to get as much as possible during the lab. Ask questions when you
do not understand something. Everything that you do in this lab will be
used in the next assignment or in the final project.

7

