
Exercise Set 10 c©2007 Felleisen, Proulx, et. al.

10 Project

Goals

The goal of the final project is to use the concepts and techniques you
learned in this course in designing a functional complete program that has
some use.

We will provide some components for the user interaction with the pro-
gram, but you will be responsible for the design and imlementaiton of the
functionality.

Overview

There are three parts to this project.

• In the first part you will design data structures that will be used by
yur program — a variant of a stack, queue, and priority queue that
all implement a common interface.

• In the second part you will brainstorm and produce a written de-
scription of the design of your program — the data definitions you
may need, the way the functionality will be implemented, the way
the program will interact with the user.

• In the third part you will implement the design in a working pro-
gram.

Project Description

Your program will allow the user to view a map of the 48 lower United
States with the locations of the capitals, and compute a routing from the
user-selected origin to the user-selected destination. The user can select
one of three possible methods for finding the route: a depth-first search
(DFS), a breadth-first search (BFS) or a search for the shortest path (SP).

Your program will display a graph with nodes that represent capitals of
the 48 US states. For each node the program records a name — the name of
the state. For each node, we record the information about the capital of that
state. Each edge represents a bi-directional connection between two adja-
cent states. You may consider the four corner states: Colorado Utah, Arizona
and New Mexico as connected to each other. Each edge has a value that rep-
resents the distance between the capitals of the two states. The distances

1



c©2007 Felleisen, Proulx, et. al. Exercise Set 10

between two cities are based on the geographic distance. (See a separate
announcement for a shorcut you can use to compute this distance.)

The GUI that allows the user to select one of the algorithms as well as
the origin and the destination will be provided. Your job is to display the
graph and then highligh the chosen path when the algorithm completes the
work. You may visualy represent the steps in the search, but you are not
required to.

10.1 Stacks, Queues, and Priority Queues

Graph traversal algorithms need to keep track of work to be done — specif-
ically, the nodes we should visit next when searching for a path from one
node to another on a map. We call this data structure an Accumulator.
The three algorithms DFS, BFS, and SP differ only in the way how we
add/remove items from this accumulator. Therefore, we start with a com-
mon interface, and design three different implementations of this interface.

The Accumulator interface is defined as follows:

/∗∗
∗ <P>An interface that represents a container for accumulated collection of
∗ data elements. The implementation specifies the desired add and remove
∗ behavior.</P>

∗ <P>The expected implementations are Stack, Queue, and Priority Queue.</P>

∗/
public interface Accumulator<T>{

/∗∗
∗ Does this <CODE>{@link Accumulator}</CODE> contain any data elements?
∗ @return true is there are no elements in this
∗ <CODE>{@link Accumulator}</CODE>.
∗/

public boolean isEmpty();

/∗∗
∗ Effect: Change the state of this <CODE>{@link Accumulator}</CODE>

∗ by adding the given element to this <CODE>{@link
∗ Accumulator}</CODE>.
∗
∗ @param t the given element
∗/

public void add(T t);

2



Exercise Set 10 c©2007 Felleisen, Proulx, et. al.

/∗∗
∗ Effect: Change the state of this <CODE>{@link Accumulator}</CODE>

∗ by removing the given element to this <CODE>{@link Accumulator}</CODE>.
∗ Produce the removed element.
∗
∗ @return the removed element
∗/

public T remove();
}

1. Design the class MyStack<T> that implements the Accumulator<T>

interface by always removing the most recently added element.

2. Design the class MyQueue<T> that that implements the Accumulator<T>

interface by always removing the least recently added element.

3. Design the class MyPriorityQueue<T> that contains an instance of
a Comparator<T> and implements the Accumulator<T> interface by
always removing the element that has the highest priority as deter-
mined by its Comparator<T>.

4. Design the classes IllegalStackOperation IllegalQueueOperation and Ille-
galPriorityQueueOperation that extend the class Exception in the java.lang
package. Modify the methods that implement the Stack, Queue, and
the PriorityQueue so that they throw the appropriate exceptions.

Explore the Java documentation and in online tutorials to see how to
throw and catch an Exception that is not a subclass of the RuntimeEx-
ception.

Note: You can decide on your own what will be the class of data that will
provide the elements to use in testing these classes.

10.2 Algorithms

Your model should implement three graph traversal algorithms (we will
discuss these in class on Monday, November 19th):

• Depth-First Seaarch

• Breadth-First Search

• Shortest Path Search

3



c©2007 Felleisen, Proulx, et. al. Exercise Set 10

10.3 User interactions

The interactions at the minimum should have the following functionality:

• User should be able to see a graphical representation of the graph.

• User should be able to select which of the three algorithms is to be
used for the subsequent task.

• User should be able to specify the origin and the destination of the
desired path.

• The user should be able to see the resulting path.

The frills

Of course, the view can be much more elaborate. Here is a list of possible
enhancements:

• Highlight the path is a different color in the graphics display.

• Display the steps in the search by highlighting in a different color
the visited nodes, the f ringe nodes (those currently in the queue or
the stack), the origin, the target, and the unseen nodes. Animate the
process using either the timer, or a user advance triggered by a key
press.

• Animate the reconstruction of the path by traversing from the found
target back to the previous node, all the way up to the origin.

• Display in a GUI the path length and possibly the nodes along the
path.

The Advice

The design part of each project typically takes the greatest amount of time.
the more time you spend thinking things through, the easier it is to actually
write the code.

Make sure you think the whole framework through before you start
programming. Spend some time researching the Java libraries to see what
tasks can be done using the existing tools. Write sample adapters to see
how the existing class can be used in your setting.

4



Exercise Set 10 c©2007 Felleisen, Proulx, et. al.

For example, in our sorting assignment the Traversal interface allowed
us to supply the data to the algorithm in a number of different ways — and
allowed us to the produce the result in a universally readable manner as
well.

Then design the key component by specifying their interfaces — the
method headers, the interfaces that various classes must implement or use
to get information from others.

For now, you have not learned about various tools and techniques to
support such design process — other than class diagrams. Any descrip-
tion that you find helpful in clarifying the roles of the different classes and
interfaces in your program is acceptable.

The design document you produce (which could be primarily in the
form of javadocs) should describe all data definitions and the key methods,
as well as give a general overview of the project organization.

The Documentation: a concise summary

You may have noticed that the style in which we write documentation for
this assignment has changed. When written in the well formatted javadoc
style, the comments can used to generate web pages of documentation with
cross-references and browsing capabilities. There are a few basic rules, the
rest you should learn on your own, gradually, as you become more and
more skilled Java programmers.

Here are comments to specify the name of the file, and the class defini-
tion:

/∗
∗ @(#)Word.java 17 November 2007
∗/

/∗∗
∗ <P><CODE>Word</CODE> represents one word and its
∗ number of occurrences counted in the
∗ <CODE>{@link WordCounter WordCounter}</CODE> class.</P>

∗
∗ @see Comparable
∗
∗ @author Viera K. Proulx
∗/

public class Word implements Comparable {

5



c©2007 Felleisen, Proulx, et. al. Exercise Set 10

The @author and @see identify the author and provide a cross-reference
to other classes as specified.

Each field in the class has its own comment:
/∗∗
∗ the frequency counter
∗/

public int counter;

Each method has a comment that includes a separate line for each pa-
rameter as well as for the return value:

/∗∗
∗ Compare two <CODE>Object</CODE>s for equality
∗
∗ @param obj the object to compare to
∗ @return true if the two objects have the same contents
∗/

public boolean equals(Object obj){

The @param has to be followed by the identifier used for that param-
eter. The <CODE> and < /CODE> tags specify the formatting for the
document to be the teletype font for representing the code.

Eclipse helps you to write the documentation. If you start the comment
line with /∗∗ and hit the return, the beginnings of remaining comment lines
are generated automatically, and you only need to add the relevant infor-
mation.

When you have finished all the documentation, select the item Gener-
ate Javadoc... in the Project menu. To see your web pages, just open the tab
doc in the Package Explorer window under your project and double click
on the index.html.
Enjoy

6


