Portfolio Problem 1 (©2007 Felleisen, Proulx, et. al.

1 Portfolio Problem

Goals

This assignment consists of a small program that uses interfaces and
classes either from Java’s standard libraries, or from our earlier labs and
assignments. The goal is to give you a bit of design freedom: You get to de-
cide which parts of the standard libraries, or which classes and interfaces
we already designed are the most suitable to use. If you design well, this
assignment should be fairly straightforward.

The goal of the second part is to give you a practice in designing tests
using the JUnit test tools and to create documentation in the style that al-
lows you to produce Javadoc documentation for your program.

Hints

Some or all of the following interfaces and classes are likely to prove
useful. In the java.lang package: Comparable, Iterator, List, Map, Set, Collec-
tions.

William Shakespeare

The Application

Have you ever wondered about the size of Shakespeare’s vocabulary?
For this assignment you will write a program that reads its input from a text
file and lists the words that occur most frequently, together with a count of
how many different words occur in the file. If this program were to run
on a file that contains all of Shakespeare’s works, it would tell you the ap-
proximate size of his vocabulary, and how often he uses the most common
words.

Hamlet, for example, contains about 4542 distinct words, and the word
"king” occurs 202 times.

The Problem
Start by downloading the file WordCount.zip and making an Eclipse
project WordCount that contains these files. Run the project, to make sure
you have all pieces in place. The main method is in the class Examples.
You are given the file test.txt that contains the entire text of Hamlet and
a file FileReader.java that contains the code that generates the words from



(©2007 Felleisen, Proulx, et. al. Portfolio Problem1

the file test.txt one at a time, via an iterator.

Note: Here you will use the imperative Iterator interface that is a part of Java
Standard Library. Make sure to look up the documentation for this interface and
understand how it works.

The class Examples contain a skeleton of tests and the code that invokes
the main method in the FileReader class that processes the input data.
Your tasks are the following:

1. Design the class Word to represent one word of Shakespeare’s vocab-
ulary, together with its frequency counter. The constructor takes only
one String (for example the word “king”) and starts the counter at
one. We consider one Word instance to be equal to another, if they
represent the same word, regardless of the value of the frequency
counter. That means that you have to override the method equals()
as well as the method hashCode().

2. Design the class that implements the Comparator interface, so that the
words can be sorted by frequencies. (Be careful!) When you are done,
place this class definition as the last part of the class definition of the
class Word. This is called an inner class.

3. Include in the class Word the method that allows you to increment the
counter (using mutation), and a method toString that prints one line
with the word and its frequency.

4. Design the class WordCounter that keeps track of all the words we
have seen so far. It should include the following methods:

// records the Word objects generated by the given Iterator.
void countWords (Iteratorit) { ... }

// How many different Words has this WordCounter recorded?
intwords() { ... }

// Prints the n most common words and their frequencies.
void printWords (intn) { ... }

Here are additional details:



Portfolio Problem 1 (©2007 Felleisen, Proulx, et. al.

5. countWords consumes an iterator that generates the words and builds
the collection of the appropriate Word instances, with the correct fre-
quencies.

6. words produces the total count of different words that have been con-
sumed.

7. printWords consumes an integer n and prints the top n words with the
highest frequencies (using the toString method defined in the class
Word).

Test Design and Management

Of course, you need to test all methods as you are designing them. Design
the tests in two stages:

1. First design the tests as we have done before, using the tester.jar and
interface.jar test harness code.

This prepares us for a new way of running tests, namely using JUnit
- Java’s standard test framework.

2. Introducing JUnit: To get the first taste of using JUnit, convert the tests
for this problem to tests that use [Unit as follows:

In the File menu select New then JUnitTestCase. When the wizard
comes up, select to include the main method, the constructor, and the
setup method. The tests for each of the methods will then become one
test case similar to this one:

[Hx
* Testing the method toString
*/
public void testToString(){
assertEquals(" Hello: 1\n" , this.hello1.toString());
assertEquals(" Hello: 3\n" , this.hello3.toString());

We see that assertEquals is basically the same as the test methods for
our test harnesses, they just don’t include the name of the test. Try to

3



(©2007 Felleisen, Proulx, et. al. Portfolio Problem1

see what happens when some of the tests fail, when a test throws an
exception, and finally, make sure that at the end all tests succeed.

Note: JUnit uses Java equals method to compare two pieces of data
for equality. Make sure your tests are designed to either compare the
primitive results of methods, or, when comparing two instances of
the class Foo, you have overridden the equals method in the class Foo
to reflect your desired equality comparison.



