Portfolio Problem2 (©2007 Felleisen, Proulx, et. al.

2 Portfolio Problem

Goals

The goal of this assignment is to show you the importance of stress tests
that measure the program performance and efficiency and can uncover po-
tentially fatal flaws.

Hints

Some or all of the following interfaces and classes are likely to prove
useful. In the java.lang package: Comparable, Iterator, Collections.

Stress Tests

The code for this assignment consists of three packages: datasets, algorithms,
and timertests. This organization allows us to understand better the struc-
ture of the code, to see which classes are related, and to hide from the user
the implementation of some of the classes.

The datasets package contains the classes that represents city data - as
a recursively built list, and as ArrayListas well as three implementations of
a Comparator: by he name of the city (and it state/zip), by zip code alone,
and by latitude..

The algorithms package is given as a library .jar file. The provided docu-
mentation tells you what classes it contains and what public methods and
tields are available for you to use. It contains several different implemen-
tations of sorting algorithms. Each of them consumes City data generated
by a Traversal and produces an Traversal that generates the sorted data. The
init method first copies the data into an internal data structure and the sort
method then performs the sorting algorithm.

Your task is to play a detective: use the timertests package to set up and
run the different algorithms, measuring the time needed to perform the
tasks for different sizes of data.

Record your results in a table that specifies the algorithm tested, the size
of data that was sorted, the Comparator used to determine the ordering (by
zip code, by state, by latitude), and the time needed to perform the sorting.
Highlight the anomalies in your test results and try to explain the reason
for them.

Write the results down as a professional report.



(©2007 Felleisen, Proulx, et. al. Portfolio Problem2

Optional extra credit

For an extra credit, you may add your implementations of some of the fol-
lowing algorithms:

1. merge sort with immutable ALists
2. in place mutable merge sort using two ArrayLists
3. heapsort with ArrayList implementation

4. binary tree sort

Detailed description of the design of TimerTests

The files you need to read and edit to perform the timer tests are in the
package timertests. You also need to know how the abstract class ASortAlgo
is defined.

The class DataSet allows us to save each set of data to be sorted and
supply the data to the sorting algorithm through a Traversal. That way all
algorithms that sort a dataset of size 2000 organized randomly will sort the
same data, making our comparison more accurate.

The constructor asks us to specify the expected size of the dataset and
the expected organization. It then provides a method add for adding the
data items in a sequential manner. The creator of the dataset is responsible
for generating the data in either sequential or random manner. The creator
of the data set is also responsible for adding as many data items as has been
specified in the constructor.

The class TestData is constructed with the initial dataset of all 29470
cities and uses that to generate an array of 11 Datasets that will be used
in the tests (5 random at sizes 1000, 2000, 4000, 8000, and 16000 and 6 se-
quential ones at sizes 1000, 2000, 4000, 8000, 16000, and 29470);

The class Result represents one timing measurement for our TimerTests.
It records which algorithm was used to perform the sorting, which Com-
parator was used to determine the sorting order, what was the size and the
organization of the dataset that was sorted, and what was the measured
runtime.

You should use all of these variables in your comparisons of various
results. To run all tests would require that you run 5 algorithms with 3
comparators for each on each of the 11 datasets (5 random at sizes 1000,
2000, 4000, 8000, and 16000 and 6 sequential ones at sizes 1000, 2000, 4000,

2



Portfolio Problem2 (©2007 Felleisen, Proulx, et. al.

8000, 16000, and 29470) for a total of 5 x 3 x 11 = 165 possible results. Some
of the algorithms cannot handle such large datasets - it is your job to find
out which ones.

Finally, the TimerTests class actually runs the timing tests. It runs each
algorithm on the selected data sets. Before looking at how this work is
organized, we need to know what methods and fields are provided by the
ASortAlgo abstract class that all algorithm classes extend.

The abstract class ASortAlgo contains two fields, the Comparator used
for determining the sorting order and the name of this sorting algorithm
to report at the end of the test. It has two abstract methods, initData that
consumes a Traversal and is used to initalize the data that the algorithm will
use, and the method sort that takes no additonal arguments (besides this)
and produces aTraversal for the sorted data. Our timing will only measure
the time needed for this step.

The TimerTests class first initialzes an ArrayList of Comparators we will
use. The method runAllTests organizes which test will be run by first creat-
ing the ArrayList of ASortAlgo objects, each representing an algorithm with
a specific Comparator. (It can build all 15 possible combinations, but we
can omit some algorithms by commenting out the appropriate lines in the
makeAlgos method.) It also builds a list of indices for the test data ArrayList
allowing us to choose which datasets should be sorted. For each com-
bination of algorithm/comparator + dataset it then invokes the runATest
method that performs one measurement and produces the Result object. All
Results are collected in an ArrayList and printed in the Console after comple-
tion of all tests.

The runATest method first invokes for the algorithm /comparator being
tested the init method providing as argumeant the Traversal for the dataset
to be sorted. It then starts the timer, invokes the sort method and checks
the elapsed time when the sort is completed. To make sure the sorting has
been performed correctly, it verifies that the resulting data has been sorted
before reporting the result. If the resulting data is not sorted, it throws the
UnsortedException.

Files in the package timertests:
DataSet.java

Result.java

TestData.java

TimerTests.java
UnsortedException.java



