
Exercise Set 9 c©2006 Felleisen, Proulx, et. al.

9 Assignment

Eliza

Our goal is to train our computer to be a mock psychiatrist, carrying on a
conversation with a patient. The patient (the user) asks a series of ques-
tions. The computer-psychiatrist replies to each question as follows. If the
question starts with one of the following (key)words: Why, Who, How,
Where, When, and What, the computer selects one of the three (or more)
possible answers appropriate for that question. If the first word is none of
these words the computer replies ’I do not know’ or something like that.

1. Start by designing the class Reply that holds a keyword for a question,
and an ArrayList of answers to a the question that starts with this
keyword.

2. Design the method randomAnswer for the class Reply that produces
one of the possible answers each time it is invoked. Make sure it
works fine even if you add new answers to your database later. Make
at least three answers to each question.

3. Design the class Eliza that contains an ArrayList of Replys.

4. In the class Eliza design the helper method firstWord that consumes a
String and produces the first word in the String.

The following code may help you. Look up the details of how this
works in the documentation for Java libraries.

System.out.println("Type in a question: ");
s = input.nextLine();
Scanner firstWord = new Scanner(s).useDelimiter("[ˆa-zA-Z]");
System.out.println("The first word is: " + firstWord.next());

Make sure your program works if the user uses all uppercase letters,
all lower case leeter, mixes them up, etc. (Again, let the Java docu-
mentation help you find the solution.)

5. In the class Eliza design the method answerQuestion that consumes the
question String and produces the (random) answer. If the first word
of the question does not match any of the replies, produce an answer
Don’t ask me that. — or something similar. If no first word exists, i.e.,

1



c©2005 Felleisen, Proulx, et. al. Exercise Set9

the user either did not type any letters, or just hit the return, throw an
EndOfSessionException.

Of course, you need to define the EndOfSessionException class.

6. In the Interactions class design the method that repeats asking ques-
tions and providing answers until it catches the EndOfSessionExcep-
tion — at which time it ends the game.

Selection Sort

In the Algorithms class design a static method SelectionSort that consumes
an ArrayList<T> and an instance of a class that implements
Comparator<T> and mutates the ArrayList<T> so that it is sorted in the
order given by the Comparator<T>.

It is possible to combine all parts into one method, but you must use
the following helper methods:

• swap that swaps in the given ArrayList<T> the elements at the two
given locations.

• findMinLoc finds in the given ArrayList<T> the location of the mini-
mum element among all elements at the location greater than or equal
to the given location. Of course, it also consumes the Comparator<T>.

• selectionSort method that is described at the beginning.

Variants

You can choose to use any of the loops we have seen (including the
Traversal<T>, and its implementation for ArrayList<T>. However, as the
second part of the problem you must convert your solutions for minLoc
and selectionSort to use either while loop without the Traversal<T> or for
loop without the Traversal<T>.

If you already used one of these, convert the code to using the other
loop. Rename your methods as minLocV1 and selectionSortV1.

2


