
Exercise Set 3 c©2007 Felleisen, Proulx, et. al.

3 Methods for Complex Class Hierarchies; Libraries

Portfolio Problems

• Methods for a grocery store

Work out the problem 14.7 in the textbook.

• Sorting the runner’s log

Work out the problem 15.4 (page 156) in the textbook.

• Methods for FEDEX shipping

The shipping company from the previous assignment keeps a list of
all packages ready to be shipped. Design the data definition for a
list of packages and then design the methods to solve the following
problems:

– Find out if the total weight of all packages exceeds the truck
weight limit. (Method name withinWeight)

– Produce a list of all packages going to a given customer. (Method
name packagesFor)

– Produce a list of URLs for all customers for the packages in to-
day’s shipment. Every customer’s URL should be in the list only
once. (Method name customerList)

– Sort the packages by their weight. (Method name sortByWeight)

• Methods for a Soccer Team Phone Tree

Design the following methods for the soccer team phone tree classes:

– Count the number of players a coach has on a team. (Method
name countPlayers)

– Produce the name of the player with the given phone number.
If the phone number does not appear in the phone tree, produce
an empty String. (Method name whosePhone)

– Does one player (the caller) call another player (the callee) di-
rectly? (Method name isCallee)
Note: If the caller is not in the phone tree, the answer is false.

1



c©2007 Felleisen, Proulx, et. al. Exercise Set3

Pair Programming Assignment

Binary Search Trees

3.1 Problem

Here is an HtDP data definition:
;; A Binary Search Tree (BST) is one of
;; — empty
;; — Node

;; A Node is (make-node Number BST BST)
(define-struct node (value left right))

;; we expect the value to be a whole number

The BST (the binary search tree) has the property that all values in the
left sub-tree are smaller than the value of the node, and all values of the
right subtree are larger than the value of the node. (We will not allow the
same number to be a value of more than one node in the tree.)

1. Define the Java class hierarchy that represents a BST.

2. Design the method that counts the number of Nodes in a BST. (Method
name count)

3. Design the method that adds the values of all nodes in the BST. (Method
name totalValue)

4. Design the method that determines whether a given number is one of
the node values in the BST. (Method name contains)

5. Design the method that inserts a new node with the given value into
the right place in the BST. If there already exists a node with the given
value, the method produces the BST that looks the same as the origi-
nal one. (Method name insert)

6. Design the method that produces the smallest number recorded in
the BST. (Method name first)

7. Design the method that removes the node with the smallest value
from the BST. The method produces a new BST. (Method name rest)

2



Exercise Set 3 c©2007 Felleisen, Proulx, et. al.

Morphing a Polygon

3.2 Problem

Design the following methods for the classes that represent polygon data
that you have defined in the previous two assignments:

1. Count the number of points in the polygon. (Method name count)

2. Produce a morphed polygon from two original ones, with the given
morphing factor (a number between 0.0and 1.0). Make sure you fol-
low the one task, one method rule. (Method name morphPoly)

3. Draw the polygon on the Canvas c. (Method name drawPoly) Use a
sample program that uses the draw library as a guide - or consult the
Help Desk.

City Map
We continue designing classes that help us draw the city map and its

attractions. For this problem you do not need any of the classes from the
previous assignment, other than the class Place that represents a location on
the map.

3.3 Problem

Develop the data definition to represent a route through the city. We are
especially interested in being able to locate specific intersections of streets,
or named squares, plazas. etc. and to deal with city streets.

1. Design the class Xing that represents an intersection on a city map. It
should include a name and the location information.

2. Next we need to define the class that represents a segment of the street
that connects two intersections. For each street segment we need to
know the name of the street and its starting and ending intersection.

Design the class Road to represent one street segment.

3. Finally, we need a list of street segments that may represent either a
routing in the directions generated by a map program, or the list may
represent one street in the city.

Design the classes to represent a list of Roads — call it a Route.

3



c©2007 Felleisen, Proulx, et. al. Exercise Set3

4. Design the method that determines the distance each Road covers.
(Method name roadLength)

5. Design the method that computes the length of a Route. (Method
name routeLength)

6. A Route provided by a map program must have the street segments
connected to each other — i.e. next segment must start where the pre-
vious one ended. Design the method isRoute that determines whether
a Route represents valid map directions.

7. A street in a city not only consists of adjacent street segments, but
additionally, every segment has the same street name. Design the
method isStreet that determines whether a Route represents a valid
city street data.

8. Optional

Design the methods and classes that will draw each of the intersec-
tions as a black dot and will draw the streets as well. You do not need
to add the names to the map — simple dots and black lines are fine.

4


