
Lab 7 c©2006 Felleisen, Proulx, et. al.

7 Understanding Constructors, Equality, Testing

Goals

In the first part of this lab you will practice the use of constructors in assur-
ing data integrity and providing a better interface for the user. The exercises
follow those posted in lecture notes for week 5.

In the second part of the lab you will learn to use a test harness in de-
signing the test suite, and will practice the design of tests for methods with
effects.

7.1 Data Integrity: Constructor Overloading, Encapsulation,
Error Handling

Allow 20 minutes for this part. Finish the work at home and save it as a

part of your Etudes portfolio.

7.1.1 Designing constructors to assure integrity of data.

We start with a simple Date class:

// to represent a calendar date
public class Date {
public int year;
public int month;
public int day;

public Date(int year, int month, int day){
this.year = year;
this.month = month;
this.day = day;

}

// represent the information in this class as a String
public String toString(){

return "new Date(year = " + String.valueOf(year) + ",\n" +
" month = " + String.valueOf(month) + ",\n" +
" day = " + String.valueOf(day) + ")\n";

}
}

and a simple set of examples:

public class Examples {
Examples() {}

// good dates

1



c©2006 Felleisen, Proulx, et. al. Lab 7

Date d20060928 = new Date(2006, 9, 28); // Sept 28, 2006
Date d20051012 = new Date(2005, 10, 12); // Oct 12, 2005

// bad dates
Date b34453323 = new Date(3445, 33, 23);

public static void main(String argv[]){

Examples e = new Examples();
System.out.println(e.d20060928.toString());
System.out.println(e.d20051012.toString());
System.out.println(e.b34453323.toString());

}
}

Create a project Date in the Eclipse and add two files: the file Data.java
with the definition of the class Date and the file Examples.java with the defi-
nition of the Examples class. (You may copy and paste from the web page.)
Now run the project.

Of course, the third example is pure nonsense. Only the year is possibly
valid - still not really an expected value. To validate the date completely
(taking into account all the special cases for different months, as well as
leap years, and the change of the calendar at several times in the history)
is a project on its own. For the purposes of learning about the use of con-
structors, we will only make sure that the month is between 1 and 12, the
day is between 1 and 31, and the year is between 1000 and 2200.

Did you notice the repetition in the description of the valid parts of the
date? This suggests, we start with the following methods:

• method validNumber that consumes a number and the low and high
bound and returns true if the number is within the bounds (inclu-
sive).

• methods validDay, validMonth, and validYear designed in a similar
manner.

Once you have done so, change the constructor for the class Date as
follows:

public Date(int year, int month, int day){
if (this.validYear(year))

this.year = year;
else

throw new IllegalArgumentException("Invalid year in Date.");

if (this.validMonth(month))

2



Lab 7 c©2006 Felleisen, Proulx, et. al.

this.month = month;
else

throw new IllegalArgumentException("Invalid month in Date.");

if (this.validDay(day))
this.day = day;

else
throw new IllegalArgumentException("Invalid day in Date.");

}

This example show you how you can signal errors in Java. The class
IllegalArgumentException is a subclass of the RuntimeException. Including
the clause

throws new ...Exception("message");

in the code causes the program to terminate and print the specified error
message. Later we will learn how we can customize the error reporting and
also how to respond to errors without terminating the program execution.

Make additional examples with invalid day, invalid month, and invalid
year. Run the program, then comment out one invalid example at a time,
to see that all checks work correctly.

7.1.2 Overloading constructors to provide flexibility for the user: pro-

viding defaults.

When entering dates in the current year it is tedious to always have to enter
2006. We can make avoid the need to type in the year by providing an
additional constructor that requires the user to give only the day and month
and assumes that the year is the current year (2006 in our case).

Remembering the single point of control rule, we make sure that the new
overloaded constructor defers all of the work to the primary full construc-
tor:

public Date(int month, int day){
this(2006, month, day);

}

Add examples that use only the month and day to see that the construc-
tor works properly. Include examples with invalid month or year as well.
(Of course, you will have to comment them out.)

3



c©2006 Felleisen, Proulx, et. al. Lab 7

7.1.3 Overloading constructors to provide flexibility for the user: ex-

panding the options.

The user may want to enter the date in the form ”Oct 20 2006”. To make
this possible, we can add another constructor:

public Date(String month, int day){
this(1, day); // make an instance with a wrong month
if (month.equals("Jan"))

this.month = 1;
else if ...

else
throw new IllegalArgumentException("Invalid month in Date.");

}

To check that it works, allow the user to enter only the first three months
(”Jan”, ”Feb”, and ”Mar”). The rest is tedious, and in a real program would
be designed differently.

7.1.4 Encapsulation of constructors to assure data integrity.

Look at the following code:

public class Rat{
int life;

// A Rat with the given number of days to live
public Rat(int life){
this.life = life;

}

// a day goes by, the rat starves
public Rat starve(){
return new Rat(this.life - 1);

}

// rat found some food
public Rat eat(int foodsize){
return new Rat(this.life + foodsize);

}

// is the rat dead?
public boolean isDead(){
return this.life <= 0;

}

Create project RatLife and include the files Rat.java and Examples.java
where you define your examples of rats. Add the method toString to the
class Rat.

4



Lab 7 c©2006 Felleisen, Proulx, et. al.

When this class is used in the Rat Race game a new rat starting the game
always gets five years to live. After that, every new instance of a Rat is
produced by the methods starve or eat (and possibly findPoison). To prevent
the game programmer from constructing rats with an arbitrary life span,
we can equip the class Rat with two constructors, one public and one private.
The public constructor is used by the World to start the game, or to add a
new rat, if the old one dies. These instances have always the lifespan of five
years. New instances of the Rat needed as the game goes on are produced
when the methods starve or eat (and possibly findPoison) are invoked. The
code is as follows:

// Rat always starts its life with five ticks to go
public Rat(){

this.life = 5;
}

// Rat can change its life expectancy only by eating or starving
private Rat(int life){

this.life = life;
}

Add examples to the Examples class and test the behavior of these con-
structors. (See the errors generated when you attempt to use the private
constructor.)

7.2 Equality Tests: The Test Harness

You noticed that instead of using one file to keep all of our work we now
have several different files. Java requires that each (public) class or interface
is saved in a separate file and the name of that file must be the same as the
name of the class or interface, with the extension .java. That means, you
will always need several files for each problem you are working on.

We will now learn how to use our test harness for Java programs in the
context of a simple class. Start by implementing a method nextYear method
in the Date class. (This is the method for which we design the tests.) Design
the examples as we did in the last lab, and run the project.

Now add to your project the library TestHarness.jar and a library jpt.jar.
These libraries automatically provide two things of interest for this as-

signment. The first is the ISame interface:

public interface ISame {
// is this object the same as the given object?
public boolean same(Object obj);

}

5



c©2006 Felleisen, Proulx, et. al. Lab 7

The second is the class TestHarness. The TestHarness class defines meth-
ods that run test cases, keep track of the test success and failure, and print
out detailed reports. To be able to use these methods and get the reports,
the Examples class must create an instance of the TestHarness.

7.2.1 Implementing the ISame interface

We already know what it means for a class to implement an interface. Now
make the class Date implement the ISame interface. Our equality tests need
to compare whether two Date objects represent the same date: same year,
same month, and the same day. However, the argument for the method
same is an arbitrary instance of the class Object.

We solve the dilemma by implementing two methods. The method
sameDate determines whether two instances of the class Date represent the
same date:

// is this date the same as the given date?
public boolean sameDate(Date that){
return this.year == that.year &&

this.month == that.month &&
this.day == that.day;

}

In the method same we start by making sure the argument represents an
instance of the class Date, and delegate the rest of the equality testing to the
method sameDate if the answer is positive:

// is this date the same as the given object?
public boolean same(Object that){
if (that instanceof Date)

return ((Date)that).sameDate(this);
else

return false;
}

This is a simplified test that allows an instance of a subclass of the class
Date to be considered the same as an instance of the class Date, as long as
they both give the same year, month, and day.For examples the class Week-
Date includes the day of the week information:

class WeekDate extends Date{
String weekday;

WeekDate(int year, int month, int day, String weekday){
super(year, month, day);
this.weekday = weekday;

}
}

6



Lab 7 c©2006 Felleisen, Proulx, et. al.

The following two dates would be considered the same:

Date d20061020 = new Date(2006, 10, 20);
WeekDate wd20061020Fr = new WeekDate(2006, 10, 20, "Friday");

d20061020.same(wd20061020Fr) --> true

However, if in the class WeekDate we have also overriden the method
same by invoking the method sameWeekDate, the comparison

wd20061020Fr.same(d20061020)

would produce false. Try it.

For all other classes we implement the same method in a similar fashion.
We first design the method that compares two instances of the same class,
just as we have learned in the previous labs, then implement the method
same that tests whether the argument is an instance of the same class and
invoke our method if the answer is true.

7.2.2 The test harness: Introduction

The class TestHarness included in the TestHarness.jar library defines the fol-
lowing methods:

// test that compares two boolean-s using == operator
test(String testname, boolean testvalue, boolean expected)

// test that compares two char-s using == operator
test(String testname, char testvalue, char expected)

// test that compares two integers using == operator
test(String testname, int testvalue, int expected)

// test that compares two double-s using == operator
test(String testname, double testvalue, double expected, double within)

// test that compares two objects using same method
test(String testname, ISame testvalue, ISame expected)

// test that compares two objects using Java (or overridden) equals
test(String testname, Object testvalue, Object expected)

// test that only reports success or failure
void test(String testname, boolean result)

// report on the number and nature of failed tests
void testReport()

// produce test names and values compared for all tests
void fullTestReport()

7



c©2006 Felleisen, Proulx, et. al. Lab 7

(There are methods for the primitive types short, long, and float as well.)

Notice that invoking the test method is very similar to our use of check
construct in ProfessorJ.

Convert the Examples class that tests the Date constructors to use the
TestHarness library as follows:

public class Examples {
Examples() {}

// sample dates
Date d20060928 = new Date(2006, 9, 28); // Sept 28, 2006
Date d20070928 = new Date(2007, 9, 28); // Sept 28, 2007
Date d20051012 = new Date(2005, 10, 12); // Oct 12, 2005

TestHarness th = new TestHarness("Test same Method ");

// Run the test suite for the nextYear method
public void testNextYearMethod() {
th.test("nextYear: OK", d20060928.nextYear(), d20070928);
th.test("nextYear: NO", d20060928.nextYear(), d20051012);

}

// Run the test suite for the same method
public void testSameMethod() {
th.test("same: OK", d20060928.same(d20060928), true);
th.test("same: NO", d20060928.same(d20051012), false);

}

public static void main(String argv[]){

Examples e = new Examples();
e.testSameMethod();

e.th.testReport();
e.th.fullTestReport();

}
}

We expect the second test for the method nextYear to fail. Both the short
test report (reporting only failures) and the full test report (reporting all test
results) provide the expected feedback. Each test case prints out the test
name, and then indicates success or failure. It also prints out the expected
and actual values.

Important: If your expected and actual values are objects, then you
must remember to implement the toString() method in order to see a read-
able printout! You’ll know that you’ve forgotten to do so if you see text like
Date@7fde3 in the results.

8



Lab 7 c©2006 Felleisen, Proulx, et. al.

7.3 Using the test harness

In Lab 5 you defined the same method for the classes that represent a list of
stars in the World. We will use that example to practice the use of the test
harness.

• Create a project Stars by creating one file per class or interface.

• Comment out the test cases in the Examples class. Do not delete them
— as they will be converted to the new test format later.

• In lab 5 we had the following examples/tests:

// Sample data
Star s1 = new Star(new CartPt(20, 40), 10);
Star s2 = new Star(new CartPt(30, 40), 5);
Star s3 = new Star(new CartPt(10, 30), 8);
Star s4 = new Star(new CartPt(10, 50), 10);

LoStars mtstars = new MTLoStars();
LoStars list1 = new ConsLoStars(s1, mtstars);
LoStars list2 = new ConsLoStars(s2, list1);
LoStars list3 = new ConsLoStars(s3, list2);
LoStars list4 = new ConsLoStars(s4, list3);

// dealing with the empty list
mtstars.same(new MTLoStars()) --> true
mtstars.same(list1) --> false
list1.same(mtstars) --> false
list4.same(mtstars) --> false

// dealing with a list with one item
list1.same(new ConsLoStars(s1, mtstars)) --> true
list1.same(list2)) --> false
list1.same(new ConsLoStars(s2,

new ConsLoStars(s3, mtstars))) --> false

// dealing with a list with more than one item
list4.same(new ConsLoStars(s1, mtstars)) --> false
list4.same(new ConsLoStars(s4,

new ConsLoStars(s3, list2)) --> true
list4.same(new ConsLoStars(s4,

new ConsLoStars(s2, mtstars)) --> false

Convert these tests to the tests that use the TestHarness.

• Now replace those where the expected value is true as follows:

mtstars.same(new MTLoStars()) --> true
list1.same(new ConsLoStars(s1, mtstars)) --> true

9



c©2006 Felleisen, Proulx, et. al. Lab 7

become statements

th.test("test same for empty class",
mtstars,
new MTLoStars());

th.test("test same for nonempty class",
list1,
new ConsLoStars(s1, mtstars));

within the test methods in the Examples class.

Notice which tests fail, even though they were successful before. The
test harness is using the Java method equals that only checks whether
two objects are the same instances. We need to define our own mea-
sure of equality.

• Make the classes CartPt, Star, and ALoStars implement the ISame in-
terface. For the classes CartPt and Star this is straightforward. In the
classes that extend ALoStars modify the implementation of the same
method so that it starts with the instanceof test.

• Make sure you add tests that compare an instance of MTLoStars and
ConsLoStars with an object that is not an instance of the ALoStars class
hierarchy.

• Add the method toString() to all classes in this project.

You must complete the problems in this lab and include the solutions in

your Etudes portfolio.

10


