
Exercise Set 9 c©2006 Felleisen, Proulx, et. al.

9 Assignment

Etudes

1. The last exercise in the Part 1 of the lab.

2. The last exercise in the Part 2 of the lab.

3. The first and second exercise in the Defining and Handling Exceptions
section of the Part 3 of the lab.

4. The filter method in the Defining and Handling Exceptions section of
the Part 3 of the lab.

5. The ArrayList and Java Libraries section of the Part 3 of the lab.

Main Assignment:

Abstracting Traversals and Algorithms.

In this problem set you will work with several predefined classes that rep-
resent cities and lists of cities, as well as files that provide infrastructure for
the tests and for dealing with user input.

The focus of your work is on learning to use abstractions in building
reusable program components.

Part 1: Iterators, Loops, User input

Start by downloading the file HW9.zip and making an Eclipse project
HW9 that contains these files. Add jpt.jar as a Variable to your project. Run
the project, to make sure you have all pieces in place. The main method is
in the class Interactions.

The classes you will work with are the following:

• class City represents name, state, latitude, longitude, and a zip code
for one city

• AList<T> and its subclasses represent lists of objects of the type T

• interface Traversal<T> to represent an iterator

1



c©2005 Felleisen, Proulx, et. al. Exercise Set9

• class Examples is the class that holds examples of data and the tests for
all your methods

• class Interactions is the class that facilitates user interactions and al-
lows you to explore the behavior of parts of your program

• class Algorithms<T extends ISame> is designed to contain methods
that process data generated by a Traversal. Examples of such meth-
ods are orMap, filter, and sorting algorithms.

• interface ISelect<T> and interface IObj2Obj<T, S> represent function
objects consumed by the methods in the Algorithms<T extends ISame>
class.

• interface ISame is our standard interface for implementing the usual
extensional equality comparison of objects

9.1 Problem

Run the project and explore the buttons generated by the Interactions class.
Notice, that the button labels correspond to the names of methods that have
the following headers:

public void methodName()

The buttons allow you to execute one method at a time — within the
context of your program. Try the GUI input, the console input, and the file
input on small files.

9.2 Problem

For the given classes City, AList<T> (and its subclasses), and the interface
Traversal<T> design the method map in the Algorithms class that consumes
a Traversal and an instance of the class that implements the IObj2Obj<T, S>

interface and produces a new AList<S>.

Use this method to produce a list of the names of all cities in the given
AList<City>.

2



Exercise Set 9 c©2006 Felleisen, Proulx, et. al.

9.3 Problem

Design the class ALT that implements the Traversal interface and records its
data in an ArrayList.

Note: We did this in class on Monday.
Use this method to produce a list of the names of all cities in the given

AList<City>.

9.4 Problem: Extra Credit

The goal here is to understand the difficulties in making copies of lists and
comparing them for equality.

The file CopyTests.java defines three different ways of copying lists of
cities.

• Use each of the methods to perform the following series of tasks:

– Create list1 of six cites and list2 that is the result of copying list1.

– Sort list2. Print both lists.

– Start afresh - with list2 being a new copy of list1, then change the
name of one city in list2. Again, print the resulting lists.

• Design examples/tests for each of these methods.

• Design the method that tests the equality of two lists according to
the corresponding copy method. It produces true when comparing
a list with its copy and produces false if the other list could not be
produced by this copy method.

3


