
Exercise Set 8 c©2006 Felleisen, Proulx, et. al.

8 Assignment

Etudes

8.1 Part 1

Finish all the lab for this week and include it in your portfolio.

8.2 Part 2

Do the first 4 problems below. For the filter method, add examples of its
use in the context of the provided code.

Main Assignment:

Abstracting with Object, Interfaces, and Function Ob-

jects

8.3 Problem

You will start this assignment with the given code. The code as written
runs in ProfessorJ — separate it into files as needed to build a Java project.
You should also use the TestHarness for testing of your program.

The code defines a list of objects, a class that represents a person, and
its derived class that represents a student. There are no examples of data.
Some methods are already defined, but do not include tests. By filling in
the missing pieces of the design recipe, you will become familiar with the
code. You will then add new methods to this class hierarchy.

1. Draw a class diagram for the given class hierarchy.

2. Make examples of data as required by the design recipe.

3. Design and run tests for all methods in the class hierarchy that repre-
sents a list of objects, using a list of students as the sample data.

4. Design the method filter that produces a list of all objects that satisfy
the given predicate.

5. Design an interface ICompare that contains a method betterThan which
takes as argument one Object and returns a boolean value.

1



c©2005 Felleisen, Proulx, et. al. Exercise Set8

6. In the class Person the basis for the betterThan comparison is the al-
phabetical ordering of the names. In the class Student the ordering is
determined by the gpa. Modify each class to implement the ICompare
interface accordingly.

7. Add to the classes that represent a list of Objects the method(s) that
implement insertion sort, the ordering determined by the betterThan
method of the ICompare interface. Test is with both, lists of Persons
and lists of Students.

8. Design the method that verifies that a list is sorted according to the
ordering determined by the betterThan method of the ICompare inter-
face.

9. Design and implement quicksort for the list of Objects. (Refer to HtDP
for the explanation of quicksort.)

8.4 Problem

1. Define an interface IObj2Obj which contains a method obj2obj that
consumes one Object and produces another Object.

2. Define a class that implements this interface by consuming an in-
stance of the class Student and producing a String that contains stu-
dent’s id, name, credits, and gpa. For example, it may produce
”1234, Jenny Smart, 34 credits, gpa 3.4”.

3. Design the method that for the list of Objects that consumes an in-
stance of a class that implements IObj2Obj and produces a new list
of Objects where every element is the result of invoking the obj2obj
method with the element of the original list as its argument.

4. Write a test case that produces a list of Strings representing all honors
students (with gpa greater than 3.5).

5. Write a test case that produces a list of Strings that represent all stu-
dents with more than 80 credits.

2


